

FRRouting User Guide

Introduction

	Overview
	How to get FRR

	About FRR

	Mailing Lists

	Bug Reports

	Installation
	From Packages

	From Snapcraft

	From Source

	Basic Setup
	Crash logs

	Daemons Configuration File

	Services

	Systemd

	Operations

Basics

	Basic Commands
	Config Commands

	Terminal Mode Commands

	Common Invocation Options

	Loadable Module Support

	Virtual Terminal Interfaces

	Extended Logging Target
	Destinations

	Options

	Structured data

	Restart and Reconfiguration caveats

	VTY shell
	Live logs

	Pager usage

	Permissions and setup requirements

	Integrated configuration mode

	Northbound gRPC
	Northbound gRPC Features

	Daemon gRPC Configuration

	Filtering
	IP Access List

	IP Prefix List

	Route Maps
	Route Map Command

	Route Map Match Command

	Route Map Set Command

	Route Map Call Command

	Route Map Exit Action Command

	Route Map Optimization Command

	Route Map Examples

	Affinity Maps
	Command

	IPv6 Support
	Router Advertisement

	Router Advertisement Configuration Example

	Kernel Interface

	SNMP Support
	Getting and installing an SNMP agent

	NET-SNMP configuration

	AgentX configuration

	Handling SNMP Traps

	Scripting
	Scripting

	Available Lua hook calls

	Nexthop Groups

Protocols

	Zebra
	Invoking zebra

	Configuration Addresses behaviour

	Interface Commands

	Nexthop Tracking

	PBR dataplane programming

	Administrative Distance

	Route Replace Semantics

	Virtual Routing and Forwarding

	Table Allocation

	ECMP

	Single Vxlan Device Support

	MPLS Commands

	Segment-Routing IPv6

	Multicast RIB Commands

	zebra Route Filtering

	zebra FIB push interface

	FPM Commands

	Dataplane Commands

	DPDK dataplane

	zebra Terminal Mode Commands

	Router-id

	sysctl settings

	Debugging

	Scripting

	Bidirectional Forwarding Detection
	Starting BFD

	BFDd Commands

	Configuration

	Status

	Distributed BFD

	Debugging

	BGP
	Starting BGP

	Basic Concepts

	BGP Router Configuration

	Displaying BGP Information

	Route Reflector

	Suppressing routes not installed in FIB

	Routing Policy

	BGP Regular Expressions

	Miscellaneous Configuration Examples

	BGP tcp-mss support

	Configuring FRR as a Route Server

	Prefix Origin Validation Using RPKI

	Weighted ECMP using BGP link bandwidth

	Flowspec

	BGP fast-convergence support

	Babel
	Configuring babeld

	Babel configuration

	Babel redistribution

	Show Babel information

	Babel debugging commands

	Babel sample configuration file

	OpenFabric
	Configuring fabricd

	OpenFabric router

	OpenFabric Timer

	OpenFabric interface

	Showing OpenFabric information

	Debugging OpenFabric

	Sample configuration

	LDP
	Running Ldpd

	Understanding LDP principles

	LDP Configuration

	Show LDP Information

	LDP debugging commands

	Sample configuration

	EIGRP
	Starting and Stopping eigrpd

	EIGRP Configuration

	How to Announce EIGRP route

	Show EIGRP Information

	EIGRP Debug Commands

	Sample configuration

	EVPN
	EVPN Concepts

	FRR Configuration

	Linux Interface Configuration

	ISIS
	Configuring isisd

	ISIS router

	ISIS Timer

	ISIS Fast-Reroute

	ISIS region

	ISIS interface

	Showing ISIS information

	Traffic Engineering

	Segment Routing

	Flex-Algos (Flex-Algo)

	Debugging ISIS

	ISIS Configuration Examples

	ISIS Vrf Configuration Examples

	NHRP
	Routing Design

	Configuring NHRP

	Hub Functionality

	Integration with IKE

	Multicast Functionality

	NHRP Events

	Show NHRP

	Configuration Example

	OSPFv2
	OSPF Fundamentals

	Configuring OSPF

	OSPF route-map

	Graceful Restart

	Showing Information

	Opaque LSA

	Traffic Engineering

	Router Information

	Segment Routing

	External Route Summarisation

	TI-LFA

	Debugging OSPF

	Sample Configuration

	OSPFv3
	OSPF6 router

	ASBR Summarisation Support in OSPFv3

	OSPF6 area

	OSPF6 interface

	OSPF6 route-map

	Redistribute routes to OSPF6

	Graceful Restart

	Authentication trailer support:

	Showing OSPF6 information

	OSPFv3 Debugging

	Sample configuration

	PATH
	Configuration

	Starting

	PCEP Support

	Pathd Configuration

	Usage with BGP route-maps

	Sample configuration

	PIM
	Starting and Stopping pimd

	PIM Interface Configuration

	PIM Multicast RIB

	Multicast Source Discovery Protocol (MSDP) Configuration

	Show PIM Information

	PIM Debug Commands

	PIM Clear Commands

	PIM EVPN configuration

	Sample configuration

	PIMv6
	Starting and Stopping pim6d

	PIMv6 Interface Configuration

	Show PIMv6 Information

	PIMv6 Clear Commands

	PIMv6 Debug Commands

	PBR
	Starting PBR

	Nexthop Groups

	PBR Maps

	PBR Policy

	PBR Debugs

	PBR Details

	Sample configuration

	RIP
	Starting and Stopping ripd

	RIP Configuration

	RIP Version Control

	How to Announce RIP route

	Filtering RIP Routes

	RIP Metric Manipulation

	RIP distance

	RIP route-map

	RIP Authentication

	RIP Timers

	Show RIP Information

	RIP Debug Commands

	Sample configuration

	RIPng
	Invoking ripngd

	ripngd Configuration

	ripngd Terminal Mode Commands

	ripngd Filtering Commands

	Sample configuration

	SHARP
	Starting SHARP

	Using SHARP

	STATIC
	Starting STATIC

	Static Route Commands

	Multiple nexthop static route

	SR-TE Route Commands

	VNC and VNC-GW
	Configuring VNC

	Manual Address Control

	Other VNC-Related Commands

	Example VNC and VNC-GW Configurations

	VRRP
	Starting VRRP

	Protocol Overview

	Configuring VRRP

	BMP
	Implementation characteristics

	Starting BMP

	Configuring BMP

	WATCHFRR
	Starting WATCHFRR

	WATCHFRR commands

	MGMTd (Management Daemon)
	MGMT Frontend Interface

	MGMTD Backend Interface

	MGMTD Transaction Engine

	MGMTD Configuration Rollback and Commit History

	MGMT Configuration commands

	MGMT Show commands

	MGMT Daemon debug commands

	MGMT Client debug commands

Appendix

	Reporting Bugs
	Report Format & Requested Information

	Packet Binary Dump Format

	Glossary

	The frr-reload.py script
	Options

Copyright notice

Copyright (c) 1996-2018 Kunihiro Ishiguro, et al.

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by Kunihiro Ishiguro.

Overview

FRR [https://frrouting.org] is a fully featured, high performance, free software IP routing suite.

FRR implements all standard routing protocols such as BGP, RIP, OSPF, IS-IS and
more (see Feature Matrix), as well as many of their extensions.

FRR is a high performance suite written primarily in C. It can easily handle
full Internet routing tables and is suitable for use on hardware ranging from
cheap SBCs to commercial grade routers. It is actively used in production by
hundreds of companies, universities, research labs and governments.

FRR is distributed under GPLv2, with development modeled after the Linux
kernel. Anyone may contribute features, bug fixes, tools, documentation
updates, or anything else.

FRR is a fork of Quagga [http://www.quagga.net/].

How to get FRR

The official FRR website is located at https://frrouting.org/ and contains further
information, as well as links to additional resources.

Several distributions provide packages for FRR. Check your distribution’s
repositories to find out if a suitable version is available.

Up-to-date Debian & Redhat packages are available at https://deb.frrouting.org/
& https://rpm.frrouting.org/ respectively.

For instructions on installing from source, refer to the
developer documentation [http://docs.frrouting.org/projects/dev-guide/en/latest/].

About FRR

FRR provides IP routing services. Its role in a networking stack is to exchange
routing information with other routers, make routing and policy decisions, and
inform other layers of these decisions. In the most common scenario, FRR
installs routing decisions into the OS kernel, allowing the kernel networking
stack to make the corresponding forwarding decisions.

In addition to dynamic routing FRR supports the full range of L3 configuration,
including static routes, addresses, router advertisements etc. It has some
light L2 functionality as well, but this is mostly left to the platform. This
makes it suitable for deployments ranging from small home networks with static
routes to Internet exchanges running full Internet tables.

FRR runs on all modern *NIX operating systems, including Linux and the BSDs.
Feature support varies by platform; see the Feature Matrix.

System Requirements

System resources needed by FRR are highly dependent on workload. Routing
software performance is particularly susceptible to external factors such as:

	Kernel networking stack

	Physical NIC

	Peer behavior

	Routing information scale

Because of these factors - especially the last one - it’s difficult to lay out
resource requirements.

To put this in perspective, FRR can be run on very low resource systems such as
SBCs, provided it is not stressed too much. If you want to set up 4 Raspberry
Pis to play with BGP or OSPF, it should work fine. If you ask a FRR to process
a complete internet routing table on a Raspberry Pi, you will be disappointed.
However, given enough resources, FRR ought to be capable of acting as a core IX
router. Such a use case requires at least 4gb of memory and a recent quad-core
server processor at a minimum.

If you are new to networking, an important thing to remember is that FRR is
control plane software. It does not itself forward packets - it exchanges
information with peers about how to forward packets. Forwarding plane
performance largely depends on choice of NIC / ASIC.

System Architecture

Traditional routing software is made as a one process program which provides
all of the routing protocol functionalities. FRR takes a different approach.
FRR is a suite of daemons that work together to build the routing table. Each
major protocol is implemented in its own daemon, and these daemons talk to a
middleman daemon (zebra), which is responsible for coordinating routing
decisions and talking to the dataplane.

This architecture allows for high resiliency, since an error, crash or exploit
in one protocol daemon will generally not affect the others. It is also
flexible and extensible since the modularity makes it easy to implement new
protocols and tie them into the suite. Additionally, each daemon implements a
plugin system allowing new functionality to be loaded at runtime.

An illustration of the large scale architecture is given below.

+----+ +----+ +-----+ +----+ +----+ +----+ +-----+
|bgpd| |ripd| |ospfd| |ldpd| |pbrd| |pimd| |.....|
+----+ +----+ +-----+ +----+ +----+ +----+ +-----+
 | | | | | | |
+----v-------v--------v-------v-------v-------v--------v
| |
| Zebra |
| |
+--+
 | | |
 | | |
+------v------+ +---------v--------+ +------v------+
*NIX Kernel		Remote dataplane	
+-------------+ +------------------+ +-------------+

All of the FRR daemons can be managed through a single integrated user
interface shell called vtysh. vtysh connects to each daemon through a UNIX
domain socket and then works as a proxy for user input. In addition to a
unified frontend, vtysh also provides the ability to configure all the
daemons using a single configuration file through the integrated configuration
mode. This avoids the overhead of maintaining a separate configuration file for
each daemon.

FRR is currently implementing a new internal configuration system based on YANG
data models. When this work is completed, FRR will be a fully programmable
routing stack.

Supported Platforms

Currently FRR supports GNU/Linux and BSD. Porting FRR to other platforms is not
too difficult as platform dependent code should be mostly limited to the
Zebra daemon. Protocol daemons are largely platform independent. Please let
us know if you can get FRR to run on a platform which is not listed below:

	GNU/Linux

	FreeBSD

	NetBSD

	OpenBSD

Versions of these platforms that are older than around 2 years from the point
of their original release (in case of GNU/Linux, this is since the kernel’s
release on https://kernel.org/) may need some work. Similarly, the following
platforms may work with some effort:

	MacOS

Recent versions of the following compilers are well tested:

	GNU’s GCC

	LLVM’s Clang

	Intel’s ICC

Unsupported Platforms

In General if the platform you are attempting to use is not listed above then
FRR does not support being run on that platform. The only caveat here is that
version 7.5 and before Solaris was supported in a limited fashion.

Feature Matrix

The following table lists all protocols cross-referenced to all operating
systems that have at least CI build tests. Note that for features, only
features with system dependencies are included here; if you don’t see the
feature you’re interested in, it should be supported on your platform.

	Daemon / Feature

	Linux

	OpenBSD

	FreeBSD

	NetBSD

	FRR Core

	
	
	
	

	zebra

	Y

	Y

	Y

	Y

	VRF

	≥4.8

	N

	N

	N

	MPLS

	≥4.5

	Y

	N

	N

	pbrd (Policy Routing)

	Y

	N

	N

	N

	WAN / Carrier protocols

	
	
	
	

	bgpd (BGP)

	Y

	Y

	Y

	Y

	VRF / L3VPN

	≥4.8
†4.3

	CP

	CP

	CP

	EVPN

	≥4.18
†4.9

	CP

	CP

	CP

	VNC (Virtual Network Control)

	CP

	CP

	CP

	CP

	Flowspec

	CP

	CP

	CP

	CP

	ldpd (LDP)

	≥4.5

	Y

	N

	N

	VPWS / PW

	N

	≥5.8

	N

	N

	VPLS

	N

	≥5.8

	N

	N

	nhrpd (NHRP)

	Y

	N

	N

	N

	Link-State Routing

	
	
	
	

	ospfd (OSPFv2)

	Y

	Y

	Y

	Y

	Segment Routing

	≥4.12

	N

	N

	N

	ospf6d (OSPFv3)

	Y

	Y

	Y

	Y

	isisd (IS-IS)

	Y

	Y

	Y

	Y

	Distance-Vector Routing

	
	
	
	

	ripd (RIPv2)

	Y

	Y

	Y

	Y

	ripngd (RIPng)

	Y

	Y

	Y

	Y

	babeld (BABEL)

	Y

	Y

	Y

	Y

	eigrpd (EIGRP)

	Y

	Y

	Y

	Y

	Multicast Routing

	
	
	
	

	pimd (PIM)

	≥4.19

	N

	Y

	Y

	SSM (Source Specific)

	Y

	N

	Y

	Y

	ASM (Any Source)

	Y

	N

	N

	N

	EVPN BUM Forwarding

	≥5.0

	N

	N

	N

	vrrpd (VRRP)

	≥5.1

	N

	N

	N

The indicators have the following semantics:

	Y - daemon/feature fully functional

	≥X.X - fully functional with kernel version X.X or newer

	†X.X - restricted functionality or impaired performance with kernel version X.X or newer

	CP - control plane only (i.e. BGP route server / route reflector)

	N - daemon/feature not supported by operating system

Known Kernel Issues

	Linux < 4.11

v6 Route Replacement - Linux kernels before 4.11 can cause issues with v6
route deletion when you have ECMP routes installed into the kernel. This
especially becomes apparent if the route is being transformed from one ECMP
path to another.

Supported RFCs

FRR implements the following RFCs:

Note

This list is incomplete.

BGP

	RFC 1771 [https://tools.ietf.org/html/rfc1771.html]
A Border Gateway Protocol 4 (BGP-4). Y. Rekhter & T. Li. March 1995.

	RFC 1965 [https://tools.ietf.org/html/rfc1965.html]
Autonomous System Confederations for BGP. P. Traina. June 1996.

	RFC 1997 [https://tools.ietf.org/html/rfc1997.html]
BGP Communities Attribute. R. Chandra, P. Traina & T. Li. August 1996.

	RFC 1998 [https://tools.ietf.org/html/rfc1998.html]
An Application of the BGP Community Attribute in Multi-home Routing. E. Chen, T. Bates. August 1996.

	RFC 2385 [https://tools.ietf.org/html/rfc2385.html]
Protection of BGP Sessions via the TCP MD5 Signature Option. A. Heffernan. August 1998.

	RFC 2439 [https://tools.ietf.org/html/rfc2439.html]
BGP Route Flap Damping. C. Villamizar, R. Chandra, R. Govindan. November 1998.

	RFC 2545 [https://tools.ietf.org/html/rfc2545.html]
Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing. P. Marques, F. Dupont. March 1999.

	RFC 2796 [https://tools.ietf.org/html/rfc2796.html]
BGP Route Reflection An alternative to full mesh IBGP. T. Bates & R. Chandrasekeran. June 1996.

	RFC 2842 [https://tools.ietf.org/html/rfc2842.html]
Capabilities Advertisement with BGP-4. R. Chandra, J. Scudder. May 2000.

	RFC 2858 [https://tools.ietf.org/html/rfc2858.html]
Multiprotocol Extensions for BGP-4. T. Bates, Y. Rekhter, R. Chandra, D. Katz. June 2000.

	RFC 2918 [https://tools.ietf.org/html/rfc2918.html]
Route Refresh Capability for BGP-4. E. Chen, September 2000.

	RFC 3107 [https://tools.ietf.org/html/rfc3107.html]
Carrying Label Information in BGP-4. Y. Rekhter & E. Rosen. May 2001.

	RFC 3765 [https://tools.ietf.org/html/rfc3765.html]
NOPEER Community for Border Gateway Protocol (BGP) Route Scope Control. G.Huston. April 2001.

	RFC 4271 [https://tools.ietf.org/html/rfc4271.html]
A Border Gateway Protocol 4 (BGP-4). Updates RFC1771. Y. Rekhter, T. Li & S. Hares. January 2006.

	RFC 4360 [https://tools.ietf.org/html/rfc4360.html]
BGP Extended Communities Attribute. S. Sangli, D. Tappan, Y. Rekhter. February 2006.

	RFC 4364 [https://tools.ietf.org/html/rfc4364.html]
BGP/MPLS IP Virtual Private Networks (VPNs). Y. Rekhter. February 2006.

	RFC 4456 [https://tools.ietf.org/html/rfc4456.html]
BGP Route Reflection An alternative to full mesh IBGP. T. Bates, E. Chen, R. Chandra. April 2006.

	RFC 4486 [https://tools.ietf.org/html/rfc4486.html]
Subcodes for BGP Cease Notification Message. E. Chen, V. Gillet. April 2006.

	RFC 4659 [https://tools.ietf.org/html/rfc4659.html]
BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN. J. De Clercq, D. Ooms, M. Carugi, F. Le Faucheur. September 2006.

	RFC 4724 [https://tools.ietf.org/html/rfc4724.html]
Graceful Restart Mechanism for BGP. S. Sangli, E. Chen, R. Fernando, J. Scudder, Y. Rekhter. January 2007.

	RFC 4760 [https://tools.ietf.org/html/rfc4760.html]
Multiprotocol Extensions for BGP-4. T. Bates, R. Chandra, D. Katz, Y. Rekhter. January 2007.

	RFC 4893 [https://tools.ietf.org/html/rfc4893.html]
BGP Support for Four-octet AS Number Space. Q. Vohra, E. Chen May 2007.

	RFC 5004 [https://tools.ietf.org/html/rfc5004.html]
Avoid BGP Best Path Transitions from One External to Another. E. Chen & S. Sangli. September 2007 (Partial support).

	RFC 5065 [https://tools.ietf.org/html/rfc5065.html]
Autonomous System Confederations for BGP. P. Traina, D. McPherson, J. Scudder. August 2007.

	RFC 5082 [https://tools.ietf.org/html/rfc5082.html]
The Generalized TTL Security Mechanism (GTSM). V. Gill, J. Heasley, D. Meyer, P. Savola, C. Pingnataro. October 2007.

	RFC 5291 [https://tools.ietf.org/html/rfc5291.html]
Outbound Route Filtering Capability. E. Chen, Y. Rekhter. August 2008.

	RFC 5292 [https://tools.ietf.org/html/rfc5292.html]
Address-Prefix-Based Outbound Route Filter for BGP-4. E. Chen, S. Sangli. August 2008.

	RFC 5492 [https://tools.ietf.org/html/rfc5492.html]
Capabilities Advertisement with BGP-4. J. Scudder, R. Chandra. February 2009.

	RFC 5575 [https://tools.ietf.org/html/rfc5575.html]
Dissemination of Flow Specification Rules. P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, D. McPherson. August 2009.

	RFC 5668 [https://tools.ietf.org/html/rfc5668.html]
4-Octet AS Specific BGP Extended Community. Y. Rekhter, S. Sangli, D. Tappan October 2009.

	RFC 6286 [https://tools.ietf.org/html/rfc6286.html]
Autonomous-System-Wide Unique BGP Identifier for BGP-4. E. Chen, J. Yuan. June 2011.

	RFC 6472 [https://tools.ietf.org/html/rfc6472.html]
Recommendation for Not Using AS_SET and AS_CONFED_SET in BGP. W. Kumari, K. Sriram. December 2011.

	RFC 6608 [https://tools.ietf.org/html/rfc6608.html]
Subcodes for BGP Finite State Machine Error. J. Dong, M. Chen, Huawei Technologies, A. Suryanarayana, Cisco Systems. May 2012.

	RFC 6810 [https://tools.ietf.org/html/rfc6810.html]
The Resource Public Key Infrastructure (RPKI) to Router Protocol. R. Bush, R. Austein. January 2013.

	RFC 6811 [https://tools.ietf.org/html/rfc6811.html]
BGP Prefix Origin Validation. P. Mohapatra, J. Scudder, D. Ward, R. Bush, R. Austein. January 2013.

	RFC 6938 [https://tools.ietf.org/html/rfc6938.html]
Deprecation of BGP Path Attributes: DPA, ADVERTISER, and RCID_PATH / CLUSTER_ID. J. Scudder. May 2013.

	RFC 6996 [https://tools.ietf.org/html/rfc6996.html]
Autonomous System (AS) Reservation for Private Use. J. Mitchell. July 2013.

	RFC 7196 [https://tools.ietf.org/html/rfc7196.html]
Making Route Flap Damping Usable. C. Pelsser, R. Bush, K. Patel, P. Mohapatra, O. Maennel. May 2014.

	RFC 7300 [https://tools.ietf.org/html/rfc7300.html]
Reservation of Last Autonomous System (AS) Numbers. J. Haas, J. Mitchell. July 2014.

	RFC 7313 [https://tools.ietf.org/html/rfc7313.html]
Enhanced Route Refresh Capability for BGP-4. K. Patel, E. Chen, B. Venkatachalapathy. July 2014.

	RFC 7606 [https://tools.ietf.org/html/rfc7606.html]
Revised Error Handling for BGP UPDATE Messages. E. Chen, J. Scudder, P. Mohapatra, K. Patel. August 2015.

	RFC 7607 [https://tools.ietf.org/html/rfc7607.html]
Codification of AS 0 Processing. W. Kumari, R. Bush, H. Schiller, K. Patel. August 2015.

	RFC 7611 [https://tools.ietf.org/html/rfc7611.html]
BGP ACCEPT_OWN Community Attribute. J. Uttaro, P. Mohapatra, D. Smith, R. Raszuk, J. Scudder. August 2015.

	RFC 7911 [https://tools.ietf.org/html/rfc7911.html]
Advertisement of Multiple Paths in BGP. D. Walton, A. Retana, E. Chen, J. Scudder. July 2016.

	RFC 7947 [https://tools.ietf.org/html/rfc7947.html]
Internet Exchange BGP Route Server. E. Jasinska, N. Hilliard, R. Raszuk, N. Bakker. September 2016.

	RFC 7999 [https://tools.ietf.org/html/rfc7999.html]
BLACKHOLE Community. T. King, C. Dietzel, J. Snijders, G. Doering, G. Hankins. October 2016.

	RFC 8050 [https://tools.ietf.org/html/rfc8050.html]
Multi-Threaded Routing Toolkit (MRT) Routing Information Export Format with BGP Additional Path Extensions. C. Petrie, T. King. May 2017.

	RFC 8092 [https://tools.ietf.org/html/rfc8092.html]
BGP Large Communities Attribute. J. Heitz, Ed., J. Snijders, Ed, K. Patel, I. Bagdonas, N. Hilliard. February 2017.

	RFC 8093 [https://tools.ietf.org/html/rfc8093.html]
Deprecation of BGP Path Attribute Values 30, 31, 129, 241, 242, and 243. J. Snijders. February 2017.

	RFC 8097 [https://tools.ietf.org/html/rfc8097.html]
BGP Prefix Origin Validation State Extended Community. P. Mohapatra, K. Patel, J. Scudder, D. Ward, R. Bush. March 2017.

	RFC 8195 [https://tools.ietf.org/html/rfc8195.html]
Use of BGP Large Communities. J. Snijders, J. Heasley, M. Schmidt. June 2017.

	RFC 8203 [https://tools.ietf.org/html/rfc8203.html]
BGP Administrative Shutdown Communication. J. Snijders, J. Heitz, J. Scudder. July 2017.

	RFC 8212 [https://tools.ietf.org/html/rfc8212.html]
Default External BGP (EBGP) Route Propagation Behavior without Policies. J. Mauch, J. Snijders, G. Hankins. July 2017.

	RFC 8277 [https://tools.ietf.org/html/rfc8277.html]
Using BGP to Bind MPLS Labels to Address Prefixes. E. Rosen. October 2017.

	RFC 8538 [https://tools.ietf.org/html/rfc8538.html]
Notification Message Support for BGP Graceful Restart. K. Patel, R. Fernando, J. Scudder, J. Haas. March 2019.

	RFC 8654 [https://tools.ietf.org/html/rfc8654.html]
Extended Message Support for BGP. R. Bush, K. Patel, D. Ward. October 2019.

	RFC 9003 [https://tools.ietf.org/html/rfc9003.html]
Extended BGP Administrative Shutdown Communication. J. Snijders, J. Heitz, J. Scudder, A. Azimov. January 2021.

	RFC 9012 [https://tools.ietf.org/html/rfc9012.html]
The BGP Tunnel Encapsulation Attribute. K. Patel, G. Van de Velde, S. Sangli, J. Scudder. April 2021.

	RFC 9072 [https://tools.ietf.org/html/rfc9072.html]
Extended Optional Parameters Length for BGP OPEN Message. E. Chen, J. Scudder. July 2021.

	RFC 9234 [https://tools.ietf.org/html/rfc9234.html]
Route Leak Prevention and Detection Using Roles in UPDATE and OPEN Messages. A. Azimov, E. Bogomazov, R. Bush, K. Patel, K. Sriram. May 2022.

	RFC 9384 [https://tools.ietf.org/html/rfc9384.html]
A BGP Cease NOTIFICATION Subcode for Bidirectional Forwarding Detection (BFD). J. Haas. March 2023.

OSPF

	RFC 2328 [https://tools.ietf.org/html/rfc2328.html]
OSPF Version 2. J. Moy. April 1998.

	RFC 2370 [https://tools.ietf.org/html/rfc2370.html]
The OSPF Opaque LSA Option R. Coltun. July 1998.

	RFC 3101 [https://tools.ietf.org/html/rfc3101.html]
The OSPF Not-So-Stubby Area (NSSA) Option P. Murphy. January 2003.

	RFC 2740 [https://tools.ietf.org/html/rfc2740.html]
OSPF for IPv6. R. Coltun, D. Ferguson, J. Moy. December 1999.

	RFC 3137 [https://tools.ietf.org/html/rfc3137.html]
OSPF Stub Router Advertisement, A. Retana, L. Nguyen, R. White, A. Zinin, D. McPherson. June 2001

ISIS

RIP

	RFC 1058 [https://tools.ietf.org/html/rfc1058.html]
Routing Information Protocol. C.L. Hedrick. Jun-01-1988.

	RFC 2082 [https://tools.ietf.org/html/rfc2082.html]
RIP-2 MD5 Authentication. F. Baker, R. Atkinson. January 1997.

	RFC 2453 [https://tools.ietf.org/html/rfc2453.html]
RIP Version 2. G. Malkin. November 1998.

	RFC 2080 [https://tools.ietf.org/html/rfc2080.html]
RIPng for IPv6. G. Malkin, R. Minnear. January 1997.

PIM

BFD

	RFC 5880 [https://tools.ietf.org/html/rfc5880.html]
Bidirectional Forwarding Detection (BFD), D. Katz, D. Ward. June 2010

	RFC 5881 [https://tools.ietf.org/html/rfc5881.html]
Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop), D. Katz, D. Ward. June 2010

	RFC 5882 [https://tools.ietf.org/html/rfc5882.html]
Generic Application of Bidirectional Forwarding Detection (BFD), D. Katz, D. Ward. June 2010

	RFC 5883 [https://tools.ietf.org/html/rfc5883.html]
Bidirectional Forwarding Detection (BFD) for Multihop Paths, D. Katz, D. Ward. June 2010

MPLS

	RFC 2858 [https://tools.ietf.org/html/rfc2858.html]
Multiprotocol Extensions for BGP-4. T. Bates, Y. Rekhter, R. Chandra, D. Katz. June 2000.

	RFC 4364 [https://tools.ietf.org/html/rfc4364.html]
BGP/MPLS IP Virtual Private Networks (VPNs). Y. Rekhter. Feb 2006.

	RFC 4447 [https://tools.ietf.org/html/rfc4447.html]
Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP), L. Martini, E. Rosen, N. El-Aawar, T. Smith, and G. Heron. April 2006.

	RFC 4659 [https://tools.ietf.org/html/rfc4659.html]
BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN. J. De Clercq, D. Ooms, M. Carugi, F. Le Faucheur. September 2006

	RFC 4762 [https://tools.ietf.org/html/rfc4762.html]
Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling, M. Lasserre and V. Kompella. January 2007.

	RFC 5036 [https://tools.ietf.org/html/rfc5036.html]
LDP Specification, L. Andersson, I. Minei, and B. Thomas. October 2007.

	RFC 5561 [https://tools.ietf.org/html/rfc5561.html]
LDP Capabilities, B. Thomas, K. Raza, S. Aggarwal, R. Aggarwal, and JL. Le Roux. July 2009.

	RFC 5918 [https://tools.ietf.org/html/rfc5918.html]
Label Distribution Protocol (LDP) ‘Typed Wildcard’ Forward Equivalence Class (FEC), R. Asati, I. Minei, and B. Thomas. August 2010.

	RFC 5919 [https://tools.ietf.org/html/rfc5919.html]
Signaling LDP Label Advertisement Completion, R. Asati, P. Mohapatra, E. Chen, and B. Thomas. August 2010.

	RFC 6667 [https://tools.ietf.org/html/rfc6667.html]
LDP ‘Typed Wildcard’ Forwarding Equivalence Class (FEC) for PWid and Generalized PWid FEC Elements, K. Raza, S. Boutros, and C. Pignataro. July 2012.

	RFC 6720 [https://tools.ietf.org/html/rfc6720.html]
The Generalized TTL Security Mechanism (GTSM) for the Label Distribution Protocol (LDP), C. Pignataro and R. Asati. August 2012.

	RFC 7552 [https://tools.ietf.org/html/rfc7552.html]
Updates to LDP for IPv6, R. Asati, C. Pignataro, K. Raza, V. Manral, and R. Papneja. June 2015.

VRRP

	RFC 3768 [https://tools.ietf.org/html/rfc3768.html]
Virtual Router Redundancy Protocol (VRRP). R. Hinden. April 2004.

	RFC 5798 [https://tools.ietf.org/html/rfc5798.html]
Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6. S. Nadas. June 2000.

SNMP

When SNMP support is enabled, the following RFCs are also supported:

	RFC 1227 [https://tools.ietf.org/html/rfc1227.html]
SNMP MUX protocol and MIB. M.T. Rose. May-01-1991.

	RFC 1657 [https://tools.ietf.org/html/rfc1657.html]
Definitions of Managed Objects for the Fourth Version of the Border
Gateway Protocol (BGP-4) using SMIv2. S. Willis, J. Burruss, J. Chu, Editor.
July 1994.

	RFC 1724 [https://tools.ietf.org/html/rfc1724.html]
RIP Version 2 MIB Extension. G. Malkin & F. Baker. November 1994.

	RFC 1850 [https://tools.ietf.org/html/rfc1850.html]
OSPF Version 2 Management Information Base. F. Baker, R. Coltun.
November 1995.

	RFC 2741 [https://tools.ietf.org/html/rfc2741.html]
Agent Extensibility (AgentX) Protocol. M. Daniele, B. Wijnen. January 2000.

Mailing Lists

Italicized lists are private.

	Topic

	List

	Development

	dev@lists.frrouting.org

	Users & Operators

	frog@lists.frrouting.org

	Announcements

	announce@lists.frrouting.org

	Security

	security@lists.frrouting.org

	Technical Steering Committee

	tsc@lists.frrouting.org

The Development list is used to discuss and document general issues related to
project development and governance. The public Slack [https://frrouting.org/community] instance and weekly
technical meetings provide a higher bandwidth channel for discussions. The
results of such discussions are reflected in updates, as appropriate, to code
(i.e., merges), GitHub issues [https://github.com/frrouting/frr/issues] tracked issues, and for governance or process
changes, updates to the Development list and either this file or information
posted at FRR [https://frrouting.org].

Bug Reports

For information on reporting bugs, please see Reporting Bugs.

Installation

This section covers the basics of building, installing and setting up FRR.

From Packages

The project publishes packages for Red Hat, Centos, Debian and Ubuntu on the
GitHub releases [https://github.com/FRRouting/frr/releases]. page. External
contributors offer packages for many other platforms including *BSD, Alpine,
Gentoo, Docker, and others. There is currently no documentation on how to use
those but we hope to add it soon.

From Snapcraft

In addition to traditional packages the project also builds and publishes
universal Snap images, available at https://snapcraft.io/frr.

From Source

Building FRR from source is the best way to ensure you have the latest features
and bug fixes. Details for each supported platform, including dependency
package listings, permissions, and other gotchas, are in the developer’s
documentation [http://docs.frrouting.org/projects/dev-guide/en/latest/building.html]. This
section provides a brief overview on the process.

Getting the Source

FRR’s source is available on the project
GitHub page [https://github.com/FRRouting/frr].

git clone https://github.com/FRRouting/frr.git

When building from Git there are several branches to choose from. The
master branch is the primary development branch. It should be considered
unstable. Each release has its own branch named stable/X.X, where X.X
is the release version.

In addition, release tarballs are published on the GitHub releases page
here [https://github.com/FRRouting/frr/releases].

Build Configuration

FRR has an excellent configure script which automatically detects most host
configurations. There are several additional configure options to customize the
build to include or exclude specific features and dependencies.

First, update the build system. Change into your FRR source directory and issue:

./bootstrap.sh

This will install any missing build scripts and update the Autotools
configuration. Once this is done you can move on to choosing your configuration
options from the list below.

	
--enable-tcmalloc

	Enable the alternate malloc library. In some cases this is faster and more efficient,
in some cases it is not.

	
--disable-doc

	Do not build any documentation, including this one.

	
--enable-doc-html

	From the documentation build html docs as well in addition to the normal output.

	
--disable-zebra

	Do not build zebra daemon. This generally only be useful in a scenario where
you are building bgp as a standalone server.

	
--disable-ripd

	Do not build ripd.

	
--disable-ripngd

	Do not build ripngd.

	
--disable-ospfd

	Do not build ospfd.

	
--disable-ospf6d

	Do not build ospf6d.

	
--disable-bgpd

	Do not build bgpd.

	
--disable-ldpd

	Do not build ldpd.

	
--disable-nhrpd

	Do not build nhrpd.

	
--disable-eigrpd

	Do not build eigrpd.

	
--disable-babeld

	Do not build babeld.

	
--disable-watchfrr

	Do not build watchfrr. Watchfrr is used to integrate daemons into startup/shutdown
software available on your machine. This is needed for systemd integration, if you
disable watchfrr you cannot have any systemd integration.

	
--enable-werror

	Build with all warnings converted to errors as a compile option. This
is recommended for developers only.

	
--disable-pimd

	Turn off building of pimd. On some BSD platforms pimd will not build properly due
to lack of kernel support.

	
--disable-vrrpd

	Turn off building of vrrpd. Linux is required for vrrpd support;
other platforms are not supported.

	
--disable-pbrd

	Turn off building of pbrd. This daemon currently requires linux in order to function
properly.

	
--enable-sharpd

	Turn on building of sharpd. This daemon facilitates testing of FRR and can also
be used as a quick and easy route generator.

	
--disable-staticd

	Do not build staticd. This daemon is necessary if you want static routes.

	
--disable-bfdd

	Do not build bfdd.

	
--disable-bgp-announce

	Make bgpd which does not make bgp announcements at all. This
feature is good for using bgpd as a BGP announcement listener.

	
--disable-bgp-vnc

	Turn off bgpd’s ability to use VNC.

	
--disable-bgp-bmp

	Turn off BGP BMP support

	
--enable-datacenter

	This option is deprecated as it is superseded by the -F (profile) command
line option which allows adjusting the setting at startup rather than
compile time.

Enable system defaults to work as if in a Data Center. See defaults.h
for what is changed by this configure option.

	
--enable-snmp

	Enable SNMP support. By default, SNMP support is disabled.

	
--disable-ospfapi

	Disable support for OSPF-API, an API to interface directly with ospfd.
OSPF-API is enabled if –enable-opaque-lsa is set.

	
--disable-ospfclient

	Disable installation of the python ospfclient and building of the example
OSPF-API client.

	
--disable-isisd

	Do not build isisd.

	
--disable-fabricd

	Do not build fabricd.

	
--enable-isis-topology

	Enable IS-IS topology generator.

	
--enable-realms

	Enable the support of Linux Realms. Convert tag values from 1-255 into a
realm value when inserting into the Linux kernel. Then routing policy can be
assigned to the realm. See the tc man page. This option is currently not
compatible with the usage of nexthop groups in the linux kernel itself.

	
--disable-irdp

	Disable IRDP server support. This is enabled by default if we have
both struct in_pktinfo and struct icmphdr available to us.

	
--disable-rtadv

	Disable support IPV6 router advertisement in zebra.

	
--enable-gcc-rdynamic

	Pass the -rdynamic option to the linker driver. This is in most cases
necessary for getting usable backtraces. This option defaults to on if the
compiler is detected as gcc, but giving an explicit enable/disable is
suggested.

	
--disable-backtrace

	Controls backtrace support for the crash handlers. This is autodetected by
default. Using the switch will enforce the requested behaviour, failing with
an error if support is requested but not available. On BSD systems, this
needs libexecinfo, while on glibc support for this is part of libc itself.

	
--enable-dev-build

	Turn on some options for compiling FRR within a development environment in
mind. Specifically turn on -g3 -O0 for compiling options and add inclusion
of grammar sandbox.

	
--disable-snmp

	Build without SNMP support.

	
--disable-vtysh

	Build without VTYSH.

	
--enable-fpm

	Build with FPM module support.

	
--with-service-timeout=X

	Set timeout value for FRR service. The time of restarting or reloading FRR
service should not exceed this value. This number can be from 0-999.
Additionally if this parameter is not passed or setting X = 0, FRR will take
default value: 2 minutes.

	
--enable-numeric-version

	Alpine Linux does not allow non-numeric characters in the version string.
With this option, we provide a way to strip out these characters for APK dev
package builds.

	
--disable-version-build-config

	Remove the “configuerd with” field that has all of the build configuration
arguments when reporting the version string in show version command.

	
--with-pkg-extra-version=VER

	Add extra version field, for packagers/distributions

	
--with-pkg-git-version

	Add git information to MOTD and build version string

	
--enable-multipath=X

	Compile FRR with up to X way ECMP supported. This number can be from 0-999.
For backwards compatibility with older configure options when setting X = 0,
we will build FRR with 64 way ECMP. This is needed because there are
hardcoded arrays that FRR builds towards, so we need to know how big to
make these arrays at build time. Additionally if this parameter is
not passed in FRR will default to 16 ECMP.

	
--enable-shell-access

	Turn on the ability of FRR to access some shell options(telnet/ssh/bash/etc.)
from vtysh itself. This option is considered extremely unsecure and should only
be considered for usage if you really really know what you are doing. This
option is deprecated and will be removed on Feb 1, 2024.

	
--enable-gcov

	Code coverage reports from gcov require adjustments to the C and LD flags.
With this option, gcov instrumentation is added to the build and coverage
reports are created during execution. The check-coverage make target is
also created to ease report uploading to codecov.io. The upload requires
the COMMIT (git hash) and TOKEN (codecov upload token) environment variables
be set.

	
--enable-config-rollbacks

	Build with configuration rollback support. Requires SQLite3.

	
--enable-confd=<dir>

	Build the ConfD northbound plugin. Look for the libconfd libs and headers
in dir.

	
--enable-sysrepo

	Build the Sysrepo northbound plugin.

	
--enable-grpc

	Enable the gRPC northbound plugin.

	
--enable-zeromq

	Enable the ZeroMQ handler.

	
--with-libpam

	Use libpam for PAM support in vtysh.

	
--enable-time-check XXX

	This option is deprecated as it was replaced by the
service cputime-stats CLI command, which may be adjusted at
runtime rather than being a compile-time setting. See there for further
detail.

	
--disable-cpu-time

	This option is deprecated as it was replaced by the
service cputime-warning NNN CLI command, which may be adjusted at
runtime rather than being a compile-time setting. See there for further
detail.

	
--enable-pcreposix

	Turn on the usage of PCRE Posix libs for regex functionality.

	
--enable-pcre2posix

	Turn on the usage of PCRE2 Posix libs for regex functionality.

PCRE2 versions <= 10.31 work a bit differently. We suggest using at least
>= 10.36.

	
--enable-rpath

	Set hardcoded rpaths in the executable [default=yes].

	
--enable-scripting

	Enable Lua scripting [default=no].

You may specify any combination of the above options to the configure
script. By default, the executables are placed in /usr/local/sbin
and the configuration files in /usr/local/etc. The /usr/local/
installation prefix and other directories may be changed using the following
options to the configuration script.

	
--enable-ccls

	Enable the creation of a .ccls file in the top level source
directory.

Some development environments (e.g., LSP server within emacs, et al.) can
utilize ccls to provide highly sophisticated IDE features (e.g.,
semantically accurate jump-to definition/reference, and even code
refactoring). The –enable-ccls causes configure to generate a
configuration for the ccls command, based on the configured
FRR build environment.

	
--prefix <prefix>

	Install architecture-independent files in prefix [/usr/local].

	
--sysconfdir <dir>

	Look for configuration files in dir [prefix/etc]. Note that sample
configuration files will be installed here.

	
--localstatedir <dir>

	Configure zebra to use dir for local state files, such as pid files and
unix sockets.

	
--with-scriptdir <dir>

	Look for Lua scripts in dir [prefix/etc/frr/scripts].

	
--with-yangmodelsdir <dir>

	Look for YANG modules in dir [prefix/share/yang]. Note that the FRR
YANG modules will be installed here.

	
--with-vici-socket <path>

	Set StrongSWAN vici interface socket path [/var/run/charon.vici].

Note

The former --enable-systemd option does not exist anymore. Support for
systemd is now always available through built-in functions, without
depending on libsystemd.

Python dependency, documentation and tests

FRR’s documentation and basic unit tests heavily use code written in Python.
Additionally, FRR ships Python extensions written in C which are used during
its build process.

To this extent, FRR needs the following:

	an installation of CPython, preferably version 3.2 or newer (2.7 works but
is end of life and will stop working at some point.)

	development files (mostly headers) for that version of CPython

	an installation of sphinx for that version of CPython, to build the
documentation

	an installation of pytest for that version of CPython, to run the unit
tests

The sphinx and pytest dependencies can be avoided by not building
documentation / not running make check, but the CPython dependency is a
hard dependency of the FRR build process (for the clippy tool.)

Least-Privilege Support

Additionally, you may configure zebra to drop its elevated privileges
shortly after startup and switch to another user. The configure script will
automatically try to configure this support. There are three configure
options to control the behaviour of FRR daemons.

	
--enable-user <user>

	Switch to user user shortly after startup, and run as user `user in normal
operation.

	
--enable-group <user>

	Switch real and effective group to group shortly after startup.

	
--enable-vty-group <group>

	Create Unix Vty sockets (for use with vtysh) with group ownership set to
group. This allows one to create a separate group which is restricted to
accessing only the vty sockets, hence allowing one to delegate this group to
individual users, or to run vtysh setgid to this group.

The default user and group which will be configured is ‘frr’ if no user or
group is specified. Note that this user or group requires write access to the
local state directory (see --localstatedir) and requires at least
read access, and write access if you wish to allow daemons to write out their
configuration, to the configuration directory (see --sysconfdir).

On systems which have the ‘libcap’ capabilities manipulation library (currently
only Linux), FRR will retain only minimal capabilities required and will only
raise these capabilities for brief periods. On systems without libcap, FRR will
run as the user specified and only raise its UID to 0 for brief periods.

Linux Notes

There are several options available only to GNU/Linux systems. If you use
GNU/Linux, make sure that the current kernel configuration is what you want.
FRR will run with any kernel configuration but some recommendations do exist.

	CONFIG_NETLINK
	Kernel/User Netlink socket. This enables an advanced interface between
the Linux kernel and zebra (Kernel Interface).

	CONFIG_RTNETLINK
	This makes it possible to receive Netlink routing messages. If you specify
this option, zebra can detect routing information updates directly from
the kernel (Kernel Interface).

	CONFIG_IP_MULTICAST
	This option enables IP multicast and should be specified when you use ripd
(RIP) or ospfd (OSPFv2) because these protocols use
multicast.

Linux sysctl settings and kernel modules

There are several kernel parameters that impact overall operation of FRR when
using Linux as a router. Generally these parameters should be set in a
sysctl related configuration file, e.g., /etc/sysctl.conf on
Ubuntu based systems and a new file
/etc/sysctl.d/90-routing-sysctl.conf on Centos based systems.
Additional kernel modules are also needed to support MPLS forwarding.

	IPv4 and IPv6 forwarding
	The following are set to enable IP forwarding in the kernel:

net.ipv4.conf.all.forwarding=1
net.ipv6.conf.all.forwarding=1

	MPLS forwarding
	Basic MPLS support was introduced in the kernel in version 4.1 and
additional capability was introduced in 4.3 and 4.5.
For some general information on Linux MPLS support, see
https://www.netdevconf.org/1.1/proceedings/slides/prabhu-mpls-tutorial.pdf.
The following modules should be loaded to support MPLS forwarding,
and are generally added to a configuration file such as
/etc/modules-load.d/modules.conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

The following is an example to enable MPLS forwarding in the
kernel, typically by editing /etc/sysctl.conf:

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth0.input=1
net.mpls.conf.eth1.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

Make sure to add a line equal to net.mpls.conf.<if>.input for
each interface ‘<if>’ used with MPLS and to set labels to an
appropriate value.

	VRF forwarding
	General information on Linux VRF support can be found in
https://www.kernel.org/doc/Documentation/networking/vrf.txt.

Kernel support for VRFs was introduced in 4.3, but there are known issues
in versions up to 4.15 (for IPv4) and 5.0 (for IPv6). The FRR CI system
doesn’t perform VRF tests on older kernel versions, and VRFs may not work
on them. If you experience issues with VRF support, you should upgrade your
kernel version.

See also

Virtual Routing and Forwarding

Building

Once you have chosen your configure options, run the configure script and pass
the options you chose:

./configure \
 --prefix=/usr \
 --localstatedir=/var/run/frr \
 --sbindir=/usr/lib/frr \
 --sysconfdir=/etc/frr \
 --enable-pimd \
 --enable-watchfrr \
 ...

After configuring the software, you are ready to build and install it in your
system.

make && sudo make install

If everything finishes successfully, FRR should be installed. You should now
skip to the section on Basic Setup.

Basic Setup

After installing FRR, some basic configuration must be completed before it is
ready to use.

Crash logs

If any daemon should crash for some reason (segmentation fault, assertion
failure, etc.), it will attempt to write a backtrace to a file located in
/var/tmp/frr/<daemon>[-<instance>].<pid>/crashlog. This feature is
not affected by any configuration options.

The crashlog file’s directory also contains files corresponding to per-thread
message buffers in files named
/var/tmp/frr/<daemon>[-<instance>].<pid>/logbuf.<tid>. In case of a
crash, these may contain unwritten buffered log messages. To show the contents
of these buffers, pipe their contents through tr '\0' '\n'. A blank line
marks the end of valid unwritten data (it will generally be followed by
garbled, older log messages since the buffer is not cleared.)

Daemons Configuration File

After a fresh install, starting FRR will do nothing. This is because daemons
must be explicitly enabled by editing a file in your configuration directory.
This file is usually located at /etc/frr/daemons and determines which
daemons are activated when issuing a service start / stop command via init or
systemd. The file initially looks like this:

zebra=no
bgpd=no
ospfd=no
ospf6d=no
ripd=no
ripngd=no
isisd=no
pimd=no
ldpd=no
nhrpd=no
eigrpd=no
babeld=no
sharpd=no
staticd=no
pbrd=no
bfdd=no
fabricd=no

#
If this option is set the /etc/init.d/frr script automatically loads
the config via "vtysh -b" when the servers are started.
Check /etc/pam.d/frr if you intend to use "vtysh"!
#
vtysh_enable=yes
zebra_options=" -s 90000000 --daemon -A 127.0.0.1"
bgpd_options=" --daemon -A 127.0.0.1"
ospfd_options=" --daemon -A 127.0.0.1"
ospf6d_options=" --daemon -A ::1"
ripd_options=" --daemon -A 127.0.0.1"
ripngd_options=" --daemon -A ::1"
isisd_options=" --daemon -A 127.0.0.1"
pimd_options=" --daemon -A 127.0.0.1"
ldpd_options=" --daemon -A 127.0.0.1"
nhrpd_options=" --daemon -A 127.0.0.1"
eigrpd_options=" --daemon -A 127.0.0.1"
babeld_options=" --daemon -A 127.0.0.1"
sharpd_options=" --daemon -A 127.0.0.1"
staticd_options=" --daemon -A 127.0.0.1"
pbrd_options=" --daemon -A 127.0.0.1"
bfdd_options=" --daemon -A 127.0.0.1"
fabricd_options=" --daemon -A 127.0.0.1"

#MAX_FDS=1024
The list of daemons to watch is automatically generated by the init script.
#watchfrr_options=""

for debugging purposes, you can specify a "wrap" command to start instead
of starting the daemon directly, e.g. to use valgrind on ospfd:
ospfd_wrap="/usr/bin/valgrind"
or you can use "all_wrap" for all daemons, e.g. to use perf record:
all_wrap="/usr/bin/perf record --call-graph -"
the normal daemon command is added to this at the end.

Breaking this file down:

bgpd=yes

To enable a particular daemon, simply change the corresponding ‘no’ to ‘yes’.
Subsequent service restarts should start the daemon.

vtysh_enable=yes

As the comment says, this causes VTYSH to apply
configuration when starting the daemons. This is useful for a variety of
reasons touched on in the VTYSH documentation and should generally be enabled.

MAX_FDS=1024

This allows the operator to control the number of open file descriptors
each daemon is allowed to start with. The current assumed value on
most operating systems is 1024. If the operator plans to run bgp with
several thousands of peers then this is where we would modify FRR to
allow this to happen.

FRR_NO_ROOT="yes"

This option allows you to run FRR as a non-root user. Use this option
only when you know what you are doing since most of the daemons
in FRR will not be able to run under a regular user. This option
is useful for example when you run FRR in a container with a designated
user instead of root.

zebra_options=" -s 90000000 --daemon -A 127.0.0.1"
bgpd_options=" --daemon -A 127.0.0.1"
...

The next set of lines controls what options are passed to daemons when started
from the service script. Usually daemons will have --daemon and -A
<address> specified in order to daemonize and listen for VTY commands on a
particular address.

The remaining file content regarding watchfrr_options and *_wrap settings
should not normally be needed; refer to the comments in case they are.

Services

FRR daemons have their own terminal interface or VTY. After installation, it’s
a good idea to setup each daemon’s port number to connect to them. To do this
add the following entries to /etc/services.

zebrasrv 2600/tcp # zebra service
zebra 2601/tcp # zebra vty
ripd 2602/tcp # RIPd vty
ripngd 2603/tcp # RIPngd vty
ospfd 2604/tcp # OSPFd vty
bgpd 2605/tcp # BGPd vty
ospf6d 2606/tcp # OSPF6d vty
ospfapi 2607/tcp # ospfapi
isisd 2608/tcp # ISISd vty
babeld 2609/tcp # BABELd vty
nhrpd 2610/tcp # nhrpd vty
pimd 2611/tcp # PIMd vty
ldpd 2612/tcp # LDPd vty
eigprd 2613/tcp # EIGRPd vty
bfdd 2617/tcp # bfdd vty
fabricd 2618/tcp # fabricd vty
vrrpd 2619/tcp # vrrpd vty

If you use a FreeBSD newer than 2.2.8, the above entries are already added to
/etc/services so there is no need to add it. If you specify a port
number when starting the daemon, these entries may not be needed.

You may need to make changes to the config files in /etc/frr.

Systemd

Although not installed when installing from source, FRR provides a service file
for use with systemd. It is located in tools/frr.service in the Git
repository. If systemctl status frr.service indicates that the FRR service
is not found, copy the service file from the Git repository into your preferred
location. A good place is usually /etc/systemd/system/.

After issuing a systemctl daemon-reload, you should be able to start the
FRR service via systemctl start frr. If this fails, or no daemons are
started. check the journalctl logs for an indication of what went wrong.

Operations

This section covers a few common operational tasks and how to perform them.

Interactive Shell

FRR offers an IOS-like interactive shell called vtysh where a user can run
individual configuration or show commands. To get into this shell, issue the
vtysh command from either a privilege user (root, or with sudo) or a user
account that is part of the frrvty group.
e.g.

root@ub18:~# vtysh

Hello, this is FRRouting (version 8.1-dev).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

ub18#

Note

The default install location for vtysh is /usr/bin/vtysh

Restarting

Restarting kills all running FRR daemons and starts them again. Any unsaved
configuration will be lost.

service frr restart

Note

Alternatively, you can invoke the init script directly:

/etc/init.d/frr restart

Or, if using systemd:

systemctl restart frr

Reloading

Reloading applies the differential between on-disk configuration and the
current effective configuration of running FRR processes. This includes
starting daemons that were previously stopped and any changes made to
individual or unified daemon configuration files.

service frr reload

Note

Alternatively, you can invoke the init script directly:

/etc/init.d/frr reload

Or, if using systemd:

systemctl reload frr

See FRR-RELOAD for more about the frr-reload.py script.

Starting a new daemon

Suppose bgpd and zebra are running, and you wish to start pimd. In
/etc/frr/daemons make the following change:

- pimd=no
+ pimd=yes

Then perform a reload.

Currently there is no way to stop or restart an individual daemon. This is
because FRR’s monitoring program cannot currently distinguish between a crashed
/ killed daemon versus one that has been intentionally stopped or restarted.
The closest that can be achieved is to remove all configuration for the daemon,
and set its line in /etc/frr/daemons to =no. Once this is done, the
daemon will be stopped the next time FRR is restarted.

Network Namespaces

It is possible to run FRR in different network namespaces so it can be
further compartmentalized (e.g. confining to a smaller subset network).
The network namespace configuration can be used in the default FRR
configuration pathspace or it can be used in a different pathspace
(-N/–pathspace).

To use FRR network namespace in the default pathspace you should add
or uncomment the watchfrr_options line in /etc/frr/daemons:

- #watchfrr_options="--netns"
+ watchfrr_options="--netns=<network-namespace-name>"

If you want to use a different pathspace with the network namespace
(the recommended way) you should add/uncomment the watchfrr_options
line in /etc/frr/<namespace>/daemons:

- #watchfrr_options="--netns"
+ #watchfrr_options="--netns=<network-namespace-name>"
+
+ # `--netns` argument is optional and if not provided it will
+ # default to the pathspace name.
+ watchfrr_options="--netns"

To start FRR in the new pathspace+network namespace the initialization script
should be called with an extra parameter:

/etc/init.d/frr start <pathspace-name>

Note

Some Linux distributions might not use the default init script
shipped with FRR, in that case you might want to try running the
bundled script in /usr/lib/frr/frrinit.sh.

On systemd you might create different units or parameterize the
existing one. See the man page:
https://www.freedesktop.org/software/systemd/man/systemd.unit.html

Basic Commands

The following sections discuss commands common to all the routing daemons.

Config Commands

In a config file, you can write the debugging options, a vty’s password,
routing daemon configurations, a log file name, and so forth. This information
forms the initial command set for a routing beast as it is starting.

Config files are generally found in /etc/frr.

Config Methods

There are two ways of configuring FRR.

Traditionally each of the daemons had its own config file. The daemon name plus
.conf was the default config file name. For example, zebra’s default config
file was zebra.conf. This method is deprecated.

Because of the amount of config files this creates, and the tendency of one
daemon to rely on others for certain functionality, most deployments now use
“integrated” configuration. In this setup all configuration goes into a single
file, typically /etc/frr/frr.conf. When starting up FRR using an init
script or systemd, vtysh is invoked to read the config file and send the
appropriate portions to only the daemons interested in them. Running
configuration updates are persisted back to this single file using vtysh.
This is the recommended method. To use this method, add the following line to
/etc/frr/vtysh.conf:

service integrated-vtysh-config

If you installed from source or used a package, this is probably already
present.

If desired, you can specify a config file using the -f or
--config_file options when starting a daemon.

Basic Config Commands

	
hostname HOSTNAME

	Set hostname of the router. It is only for current vtysh, it will not be
saved to any configuration file even with write file.

	
domainname DOMAINNAME

	Set domainname of the router. It is only for current vtysh, it will not
be saved to any configuration file even with write file.

	
password PASSWORD

	Set password for vty interface. The no form of the command deletes the
password. If there is no password, a vty won’t accept connections.

	
enable password PASSWORD

	Set enable password. The no form of the command deletes the enable
password.

	
service cputime-stats

	Collect CPU usage statistics for individual FRR event handlers and CLI
commands. This is enabled by default and can be disabled if the extra
overhead causes a noticeable slowdown on your system.

Disabling these statistics will also make the
service cputime-warning (1-4294967295) limit non-functional.

	
service cputime-warning (1-4294967295)

	Warn if the CPU usage of an event handler or CLI command exceeds the
specified limit (in milliseconds.) Such warnings are generally indicative
of some routine in FRR mistakenly blocking/hogging the processing loop and
should be reported as a FRR bug.

The default limit is 5 seconds (i.e. 5000), but this can be changed by the
deprecated --enable-time-check=... compile-time option.

This command has no effect if service cputime-stats is disabled.

	
service walltime-warning (1-4294967295)

	Warn if the total wallclock time spent handling an event or executing a CLI
command exceeds the specified limit (in milliseconds.) This includes time
spent waiting for I/O or other tasks executing and may produce excessive
warnings if the system is overloaded. (This may still be useful to
provide an immediate sign that FRR is not operating correctly due to
externally caused starvation.)

The default limit is 5 seconds as above, including the same deprecated
--enable-time-check=... compile-time option.

	
log trap LEVEL

	These commands are deprecated and are present only for historical
compatibility. The log trap command sets the current logging level for all
enabled logging destinations, and it sets the default for all future logging
commands that do not specify a level. The normal default logging level is
debugging. The no form of the command resets the default level for
future logging commands to debugging, but it does not change the logging
level of existing logging destinations.

	
log stdout LEVEL

	Enable logging output to stdout. If the optional second argument specifying
the logging level is not present, the default logging level (typically
debugging) will be used. The no form of the command disables logging to
stdout. The LEVEL argument must have one of these values: emergencies,
alerts, critical, errors, warnings, notifications, informational, or
debugging. Note that the existing code logs its most important messages with
severity errors.

Note

If systemd is in use and stdout is connected to systemd, FRR will
automatically switch to journald extended logging for this target.

Warning

FRRouting uses the writev() system call to write log messages. This
call is supposed to be atomic, but in reality this does not hold for
pipes or terminals, only regular files. This means that in rare cases,
concurrent log messages from distinct threads may get jumbled in
terminal output. Use a log file and tail -f if this rare chance is
inacceptable to your setup.

	
log file [FILENAME [LEVEL]]

	If you want to log into a file, please specify filename as
in this example:

log file /var/log/frr/bgpd.log informational

If the optional second argument specifying the logging level is not present,
the default logging level (typically debugging, but can be changed using the
deprecated log trap command) will be used. The no form of the command
disables logging to a file.

	
log syslog [LEVEL]

	Enable logging output to syslog. If the optional second argument specifying
the logging level is not present, the default logging level (typically
debugging, but can be changed using the deprecated log trap command) will
be used. The no form of the command disables logging to syslog.

Note

This uses the system’s syslog() API, which does not support message
batching or structured key/value data pairs. If possible, use
log extended EXTLOGNAME with
destination syslog [supports-rfc5424] instead of this.

	
log extended EXTLOGNAME

	Create an extended logging target with the specified name. The name has
no further meaning and is only used to identify the target. Multiple
targets can be created and deleted with the no form.

Refer to Extended Logging Target for further details and suboptions.

	
log monitor [LEVEL]

	This command is deprecated and does nothing.

	
log facility [FACILITY]

	This command changes the facility used in syslog messages. The default
facility is daemon. The no form of the command resets the facility
to the default daemon facility.

	
log record-priority

	To include the severity in all messages logged to a file, to stdout, or to
a terminal monitor (i.e. anything except syslog),
use the log record-priority global configuration command.
To disable this option, use the no form of the command. By default,
the severity level is not included in logged messages. Note: some
versions of syslogd can be configured to include the facility and
level in the messages emitted.

	
log timestamp precision [(0-6)]

	This command sets the precision of log message timestamps to the given
number of digits after the decimal point. Currently, the value must be in
the range 0 to 6 (i.e. the maximum precision is microseconds). To restore
the default behavior (1-second accuracy), use the no form of the
command, or set the precision explicitly to 0.

log timestamp precision 3

In this example, the precision is set to provide timestamps with
millisecond accuracy.

	
log commands

	This command enables the logging of all commands typed by a user to all
enabled log destinations. The note that logging includes full command lines,
including passwords. If the daemon startup option –command-log-always
is used to start the daemon then this command is turned on by default
and cannot be turned off and the [no] form of the command is dissallowed.

	
log filtered-file [FILENAME [LEVEL]]

	Configure a destination file for filtered logs with the
log filter-text WORD command.

	
log filter-text WORD

	This command forces logs to be filtered on a specific string. A log message
will only be printed if it matches on one of the filters in the log-filter
table. The filter only applies to file logging targets configured with
log filtered-file [FILENAME [LEVEL]].

Note

Log filters help when you need to turn on debugs that cause significant
load on the system (enabling certain debugs can bring FRR to a halt).
Log filters prevent this but you should still expect a small performance
hit due to filtering each of all those logs.

Note

This setting is not saved to frr.conf and not shown in
show running-config. It is intended for ephemeral debugging
purposes only.

	
clear log filter-text

	This command clears all current filters in the log-filter table.

	
log immediate-mode

	Use unbuffered output for log and debug messages; normally there is
some internal buffering.

	
log unique-id

	Include [XXXXX-XXXXX] log message unique identifier in the textual part
of log messages. This is enabled by default, but can be disabled with
no log unique-id. Please make sure the IDs are enabled when including
logs for FRR bug reports.

The unique identifiers are automatically generated based on source code
file name, format string (before filling out) and severity. They do not
change “randomly”, but some cleanup work may cause large chunks of ID
changes between releases. The IDs always start with a letter, consist of
letters and numbers (and a dash for readability), are case insensitive, and
I, L, O & U are excluded.

This option will not affect future logging targets which allow putting the
unique identifier in auxiliary metadata outside the log message text
content. (No such logging target exists currently, but RFC5424 syslog and
systemd’s journald both support it.)

	
debug unique-id XXXXX-XXXXX backtrace

	Print backtraces (call stack) for specific log messages, identified by
their unique ID (see above.) Includes source code location and current
event handler being executed. On some systems you may need to install a
debug symbols package to get proper function names rather than raw code
pointers.

This command can be issued inside and outside configuration mode, and is
saved to configuration only if it was given in configuration mode.

Warning

Printing backtraces can significantly slow down logging calls and cause
log files to quickly balloon in size. Remember to disable backtraces
when they’re no longer needed.

	
debug routemap [detail]

	This command turns on debugging of routemaps. When detail is specified
more data is provided to the operator about the reasoning about what
is going on in the routemap code.

	
service password-encryption

	Encrypt password.

	
service advanced-vty

	Enable advanced mode VTY.

	
service terminal-length (0-512)

	Set system wide line configuration. This configuration command applies to
all VTY interfaces.

	
line vty

	Enter vty configuration mode.

	
banner motd default

	Set default motd string.

	
banner motd file FILE

	Set motd string from file. The file must be in directory specified
under --sysconfdir.

	
banner motd line LINE

	Set motd string from an input.

	
exec-timeout MINUTE [SECOND]

	Set VTY connection timeout value. When only one argument is specified
it is used for timeout value in minutes. Optional second argument is
used for timeout value in seconds. Default timeout value is 10 minutes.
When timeout value is zero, it means no timeout.

Not setting this, or setting the values to 0 0, means a timeout will not be
enabled.

	
access-class ACCESS-LIST

	Restrict vty connections with an access list.

	
allow-reserved-ranges

	Allow using IPv4 reserved (Class E) IP ranges for daemons. E.g.: setting
IPv4 addresses for interfaces or allowing reserved ranges in BGP next-hops.

If you need multiple FRR instances (or FRR + any other daemon) running in a
single router and peering via 127.0.0.0/8, it’s also possible to use this
knob if turned on.

Default: off.

Sample Config File

Below is a sample configuration file for the zebra daemon.

!
! Zebra configuration file
!
frr version 6.0
frr defaults traditional
!
hostname Router
password zebra
enable password zebra
!
log stdout
!
!

! and # are comment characters. If the first character of the word is
one of the comment characters then from the rest of the line forward will be
ignored as a comment.

password zebra!password

If a comment character is not the first character of the word, it’s a normal
character. So in the above example ! will not be regarded as a comment and
the password is set to zebra!password.

Configuration versioning, profiles and upgrade behavior

All frr daemons share a mechanism to specify a configuration profile
and version for loading and saving configuration. Specific configuration
settings take different default values depending on the selected profile and
version.

While the profile can be selected by user configuration and will remain over
upgrades, frr will always write configurations using its current
version. This means that, after upgrading, a write file may write out a
slightly different configuration than what was read in.

Since the previous configuration is loaded with its version’s defaults, but
the new configuration is written with the new defaults, any default that
changed between versions will result in an appropriate configuration entry
being written out. FRRouting configuration is sticky, staying consistent
over upgrades. Changed defaults will only affect new configuration.

Note that the loaded version persists into interactive configuration
sessions. Commands executed in an interactive configuration session are
no different from configuration loaded at startup. This means that when,
say, you configure a new BGP peer, the defaults used for configuration
are the ones selected by the last frr version command.

Warning

Saving the configuration does not bump the daemons forward to use the new
version for their defaults, but restarting them will, since they will then
apply the new frr version command that was written out. Manually
execute the frr version command in show running-config to avoid
this intermediate state.

This is visible in show running-config:

Current configuration:
!
! loaded from 6.0
frr version 6.1-dev
frr defaults traditional
!

If you save and then restart with this configuration, the old defaults will
no longer apply. Similarly, you could execute frr version 6.1-dev, causing
the new defaults to apply and the loaded from 6.0 comment to disappear.

Profiles

frr provides configuration profiles to adapt its default settings
to various usage scenarios. Currently, the following profiles are
implemented:

	traditional - reflects defaults adhering mostly to IETF standards or
common practices in wide-area internet routing.

	datacenter - reflects a single administrative domain with intradomain
links using aggressive timers.

Your distribution/installation may pre-set a profile through the -F command
line option on all daemons. All daemons must be configured for the same
profile. The value specified on the command line is only a pre-set and any
frr defaults statement in the configuration will take precedence.

Note

The profile must be the same across all daemons. Mismatches may result
in undefined behavior.

You can freely switch between profiles without causing any interruption or
configuration changes. All settings remain at their previous values, and
show running-configuration output will have new output listing the previous
default values as explicit configuration. New configuration, e.g. adding a
BGP peer, will use the new defaults. To apply the new defaults for existing
configuration, the previously-invisible old defaults that are now shown must
be removed from the configuration.

Upgrade practices for interactive configuration

If you configure frr interactively and use the configuration
writing functionality to make changes persistent, the following
recommendations apply in regards to upgrades:

	Skipping major versions should generally work but is still inadvisable.
To avoid unneeded issue, upgrade one major version at a time and write
out the configuration after each update.

	After installing a new frr version, check the configuration
for differences against your old configuration. If any defaults changed
that affect your setup, lines may appear or disappear. If a new line
appears, it was previously the default (or not supported) and is now
necessary to retain previous behavior. If a line disappears, it
previously wasn’t the default, but now is, so it is no longer necessary.

	Check the log files for deprecation warnings by using grep -i deprecat.

	After completing each upgrade, save the configuration and either restart
frr or execute frr version <CURRENT> to ensure defaults of
the new version are fully applied.

Upgrade practices for autogenerated configuration

When using frr with generated configurations (e.g. Ansible,
Puppet, etc.), upgrade considerations differ somewhat:

	Always write out a frr version statement in the configurations you
generate. This ensures that defaults are applied consistently.

	Try to not run more distinct versions of frr than necessary.
Each version may need to be checked individually. If running a mix of
older and newer installations, use the oldest version for the
frr version statement.

	When rolling out upgrades, generate a configuration as usual with the old
version identifier and load it. Check for any differences or deprecation
warnings. If there are differences in the configuration, propagate these
back to the configuration generator to minimize relying on actual default
values.

	After the last installation of an old version is removed, change the
configuration generation to a newer frr version as appropriate. Perform
the same checks as when rolling out upgrades.

Terminal Mode Commands

	
write terminal

	Displays the current configuration to the vty interface.

	
write file

	Write current configuration to configuration file.

	
configure [terminal]

	Change to configuration mode. This command is the first step to
configuration.

	
terminal length (0-512)

	Set terminal display length to (0-512). If length is 0, no display
control is performed.

	
who

	Show a list of currently connected vty sessions.

	
list

	List all available commands.

	
show version

	Show the current version of frr and its build host information.

	
show logging

	Shows the current configuration of the logging system. This includes the
status of all logging destinations.

	
show log-filter

	Shows the current log filters applied to each daemon.

	
show memory [DAEMON]

	Show information on how much memory is used for which specific things in
frr. Output may vary depending on system capabilities but will
generally look something like this:

frr# show memory
System allocator statistics:
 Total heap allocated: 1584 KiB
 Holding block headers: 0 bytes
 Used small blocks: 0 bytes
 Used ordinary blocks: 1484 KiB
 Free small blocks: 2096 bytes
 Free ordinary blocks: 100 KiB
 Ordinary blocks: 2
 Small blocks: 60
 Holding blocks: 0
(see system documentation for 'mallinfo' for meaning)
--- qmem libfrr ---
Buffer : 3 24 72
Buffer data : 1 4120 4120
Host config : 3 (variably sized) 72
Command Tokens : 3427 72 247160
Command Token Text : 2555 (variably sized) 83720
Command Token Help : 2555 (variably sized) 61720
Command Argument : 2 (variably sized) 48
Command Argument Name : 641 (variably sized) 15672
[...]
--- qmem Label Manager ---
--- qmem zebra ---
ZEBRA VRF : 1 912 920
Route Entry : 11 80 968
Static route : 1 192 200
RIB destination : 8 48 448
RIB table info : 4 16 96
Nexthop tracking object : 1 200 200
Zebra Name Space : 1 312 312
--- qmem Table Manager ---

To understand system allocator statistics, refer to your system’s
mallinfo(3) man page.

Below these statistics, statistics on individual memory allocation types
in frr (so-called MTYPEs) is printed:

	the first column of numbers is the current count of allocations made for
the type (the number decreases when items are freed.)

	the second column is the size of each item. This is only available if
allocations on a type are always made with the same size.

	the third column is the total amount of memory allocated for the
particular type, including padding applied by malloc. This means that
the number may be larger than the first column multiplied by the second.
Overhead incurred by malloc’s bookkeeping is not included in this, and
the column may be missing if system support is not available.

When executing this command from vtysh, each of the daemons’ memory
usage is printed sequentially. You can specify the daemon’s name to print
only its memory usage.

	
show motd

	Show current motd banner.

	
show history

	Dump the vtysh cli history.

	
logmsg LEVEL MESSAGE

	Send a message to all logging destinations that are enabled for messages of
the given severity.

	
find REGEX...

	This command performs a regex search across all defined commands in all
modes. As an example, suppose you’re in enable mode and can’t remember where
the command to turn OSPF segment routing on is:

frr# find segment-routing on
 (ospf) segment-routing on
 (isis) segment-routing on

The CLI mode is displayed next to each command. In this example,
segment-routing on is under the router ospf mode.

Similarly, suppose you want a listing of all commands that contain “l2vpn”
and “neighbor”:

frr# find l2vpn.*neighbor
 (view) show [ip] bgp l2vpn evpn neighbors <A.B.C.D|X:X::X:X|WORD> advertised-routes [json]
 (view) show [ip] bgp l2vpn evpn neighbors <A.B.C.D|X:X::X:X|WORD> routes [json]
 (view) show [ip] bgp l2vpn evpn rd ASN:NN_OR_IP-ADDRESS:NN neighbors <A.B.C.D|X:X::X:X|WORD> advertised-routes [json]
 (view) show [ip] bgp l2vpn evpn rd ASN:NN_OR_IP-ADDRESS:NN neighbors <A.B.C.D|X:X::X:X|WORD> routes [json]
 ...

Note that when entering spaces as part of a regex specification, repeated
spaces will be compressed into a single space for matching purposes. This is
a consequence of spaces being used to delimit CLI tokens. If you need to
match more than one space, use the \s escape.

POSIX Extended Regular Expressions are supported.

	
show thread cpu [r|w|t|e|x]

	This command displays system run statistics for all the different event
types. If no options is specified all different run types are displayed
together. Additionally you can ask to look at (r)ead, (w)rite, (t)imer,
(e)vent and e(x)ecute thread event types. If you have compiled with
disable-cpu-time then this command will not show up.

	
show thread poll

	This command displays FRR’s poll data. It allows a glimpse into how
we are setting each individual fd for the poll command at that point
in time.

	
show thread timers

	This command displays FRR’s timer data for timers that will pop in
the future.

	

 Extended Logging Target

Extended Logging Target

After creating one or more extended logging targets with the
log extended EXTLOGNAME command, the target(s) must be configured
for the desired logging output.

Each extended log target supports emitting log messages in one of the following
formats:

	rfc5424 - RFC 5424 [https://tools.ietf.org/html/rfc5424.html] - modern syslog with ISO 8601 timestamps, time zone and
structured data (key/value pairs) support

	rfc3164 - RFC 3164 [https://tools.ietf.org/html/rfc3164.html] - legacy BSD syslog, timestamps with 1 second granularity

	local-syslog - same as RFC 3164 [https://tools.ietf.org/html/rfc3164.html], but without the hostname field

	journald - systemd’s native journald protocol [https://systemd.io/JOURNAL_NATIVE_PROTOCOL/].
This protocol also supports structured data (key/value pairs).

Destinations

The output location is configured with the following subcommands:

	
destination none

	Disable the target while retaining its remaining configuration.

	
destination syslog [supports-rfc5424]

	Send log messages to the system’s standard log destination
(/dev/log). This does not use the C library’s syslog() function,
instead writing directly to /dev/log.

On NetBSD and FreeBSD, the RFC5424 format is automatically used when
the OS version is recent enough (5.0 for NetBSD, 12.0 for FreeBSD).
Unfortunately, support for this format cannot be autodetected otherwise,
and particularly on Linux systems must be enabled manually.

	
destination journald

	Send log messages to systemd’s journald.

	

 VTY shell

VTY shell

vtysh provides a combined frontend to all FRR daemons in a single combined
session. It is enabled by default at build time, but can be disabled through
the --disable-vtysh option to the configure script.

vtysh has a configuration file, vtysh.conf. The location of that
file cannot be changed from /etc/frr since it contains options
controlling authentication behavior. This file will also not be written by
configuration-save commands, it is intended to be updated manually by an
administrator with an external editor.

Warning

This also means the hostname and banner motd commands (which both do
have effect for vtysh) need to be manually updated in vtysh.conf.

	
copy FILENAME running-config

	Process and load a configuration file manually; each line in the
file is read and processed as if it were being typed (or piped) to
vtysh.

Live logs

	
terminal monitor [DAEMON]

	Receive and display log messages.

It is not currently possible to change the minimum message priority (fixed
to debug) or output formatting. These will likely be made configurable in
the future.

Log messages are received asynchronously and may be printed both during
command execution as well as while on the prompt. They are printed to
stderr, unlike regular CLI output which is printed to stdout. The intent is
that stdin/stdout might be driven by some script while log messages are
visible on stderr. If stdout and stderr are the same file, the prompt and
pending input will be cleared and reprinted appropriately.

Note

If vtysh cannot keep up, some log messages may be lost. The daemons
do not wait for, get blocked by, or buffer messages for vtysh.

Pager usage

vtysh can call an external paging program (e.g. more or less) to
paginate long output from commands. This feature used to be enabled by
default but is now controlled by the VTYSH_PAGER environment variable
and the terminal paginate command:

	
VTYSH_PAGER

	If set, the VTYSH_PAGER environment variable causes vtysh to pipe
output from commands through the given command. Note that this happens
regardless of the length of the output. As such, standard pager behavior
(particularly waiting at the end of output) tends to be annoying to the
user. Using less -EFX is recommended for a better user experience.

If this environment variable is unset, vtysh defaults to not using any
pager.

This variable should be set by the user according to their preferences,
in their ~/.profile file.

	
terminal paginate

	Enables/disables vtysh output pagination. This command is intended to
be placed in vtysh.conf to set a system-wide default. If this
is enabled but VTYSH_PAGER is not set, the system default pager
(likely more or /usr/bin/pager) will be used.

Permissions and setup requirements

vtysh connects to running daemons through Unix sockets located in
/var/run/frr. Running vtysh thus requires access to that directory,
plus membership in the frrvty group (which is the group that the
daemons will change ownership of their sockets to).

To restrict access to FRR configuration, make sure no unauthorized users are
members of the frrvty group.

Warning

VTYSH implements a CLI option -u, --user that disallows entering the
characters “en” on the command line, which ideally restricts access to
configuration commands. However, VTYSH was never designed to be a privilege
broker and is not built using secure coding practices. No guarantees of
security are provided for this option and under no circumstances should this
option be used to provide any semblance of security or read-only access to
FRR.

PAM support (experimental)

vtysh has working (but rather useless) PAM support. It will perform an
“authenticate” PAM call using frr as service name. No other
(accounting, session, password change) calls will be performed by vtysh.

Users using vtysh still need to have appropriate access to the daemons’ VTY
sockets, usually by being member of the frrvty group. If they
have this membership, PAM support is useless since they can connect to daemons
and issue commands using some other tool. Alternatively, the vtysh binary
could be made SGID (set group ID) to the frrvty group.

Warning

No security guarantees are made for this configuration.

	
username USERNAME nopassword

	If PAM support is enabled at build-time, this command allows disabling the
use of PAM on a per-user basis. If vtysh finds that an user is trying to
use vtysh and a “nopassword” entry is found, no calls to PAM will be made
at all.

Integrated configuration mode

Integrated configuration mode uses a single configuration file,
frr.conf, for all daemons. This replaces the individual files like
zebra.conf or bgpd.conf.

frr.conf is located in /etc/frr. All daemons check for the
existence of this file at startup, and if it exists will not load their
individual configuration files. Instead, vtysh -b must be invoked to
process frr.conf and apply its settings to the individual daemons.

Warning

vtysh -b must also be executed after restarting any daemon.

Configuration saving, file ownership and permissions

The frr.conf file is not written by any of the daemons; instead vtysh
contains the necessary logic to collect configuration from all of the daemons,
combine it and write it out.

Warning

Daemons must be running for vtysh to be able to collect their
configuration. Any configuration from non-running daemons is permanently
lost after doing a configuration save.

Since the vtysh command may be running as ordinary user on the system,
configuration writes will be tried through watchfrr, using the write
integrated command internally. Since watchfrr is running as superuser,
vtysh is able to ensure correct ownership and permissions on
frr.conf.

If watchfrr is not running or the configuration write fails, vtysh will
attempt to directly write to the file. This is likely to fail if running as
unprivileged user; alternatively it may leave the file with incorrect owner or
permissions.

Writing the configuration can be triggered directly by invoking vtysh -w.
This may be useful for scripting. Note this command should be run as either the
superuser or the FRR user.

We recommend you do not mix the use of the two types of files.

	
service integrated-vtysh-config

	Control whether integrated frr.conf file is written when
‘write file’ is issued.

These commands need to be placed in vtysh.conf to have any effect.
Note that since vtysh.conf is not written by FRR itself, they
therefore need to be manually placed in that file.

This command has 3 states:

	service integrated-vtysh-config
	vtysh will always write frr.conf.

	no service integrated-vtysh-config
	vtysh will never write frr.conf; instead it will ask
daemons to write their individual configuration files.

	Neither option present (default)
	vtysh will check whether frr.conf exists. If it does,
configuration writes will update that file. Otherwise, writes are performed
through the individual daemons.

This command is primarily intended for packaging/distribution purposes, to
preset one of the two operating modes and ensure consistent operation across
installations.

	
write integrated

	Unconditionally (regardless of service integrated-vtysh-config setting)
write out integrated frr.conf file through watchfrr. If watchfrr
is not running, this command is unavailable.

Warning

Configuration changes made while some daemon is not running will be
invisible to that daemon. The daemon will start up with its saved
configuration (either in its individual configuration file, or in
frr.conf). This is particularly troublesome for route-maps and
prefix lists, which would otherwise be synchronized between daemons.

 Northbound gRPC

Northbound gRPC

gRPC provides a combined front end to all FRR daemons using the YANG
northbound. It is currently disabled by default due its experimental
stage, but it can be enabled with --enable-grpc option in the
configure script.

Northbound gRPC Features

	Get/set configuration using JSON/XML/XPath encondings.

	Execute YANG RPC calls.

	Lock/unlock configuration.

	Create/edit/load/update/commit candidate configuration.

	List/get transactions.

Note

There is currently no support for YANG notifications.

Note

You can find more information on how to code programs to interact
with FRR by reading the gRPC Programming Language Bindings section
in the developer’s documentation [http://docs.frrouting.org/projects/dev-guide/en/latest/grpc.html].

Daemon gRPC Configuration

The gRPC module accepts the following run time option:

	port: the port to listen to (defaults to 50051).

Note

At the moment only localhost connections with no SSL/TLS are
supported.

To configure FRR daemons to listen to gRPC you need to append the
following parameter to the daemon’s command line: -M grpc
(optionally -M grpc:PORT to specify listening port).

To do that in production you need to edit the /etc/frr/daemons file
so the daemons get started with the command line argument. Example:

other daemons...
bfdd_options=" --daemon -A 127.0.0.1 -M grpc"

 Filtering

Filtering

FRR provides many very flexible filtering features. Filtering is used
for both input and output of the routing information. Once filtering is
defined, it can be applied in any direction.

IP Access List

	
access-list NAME [seq (1-4294967295)] permit IPV4-NETWORK

	

	
access-list NAME [seq (1-4294967295)] deny IPV4-NETWORK

	
	seq
	seq number can be set either automatically or manually. In the
case that sequential numbers are set manually, the user may pick any
number less than 4294967295. In the case that sequential number are set
automatically, the sequential number will increase by a unit of five (5)
per list. If a list with no specified sequential number is created
after a list with a specified sequential number, the list will
automatically pick the next multiple of five (5) as the list number.
For example, if a list with number 2 already exists and a new list with
no specified number is created, the next list will be numbered 5. If
lists 2 and 7 already exist and a new list with no specified number is
created, the new list will be numbered 10.

Basic filtering is done by access-list as shown in the
following example.

access-list filter deny 10.0.0.0/9
access-list filter permit 10.0.0.0/8
access-list filter seq 13 permit 10.0.0.0/7

	

 Route Maps

Route Maps

Route maps provide a means to both filter and/or apply actions to route, hence
allowing policy to be applied to routes.

For a route reflector to apply a route-map to reflected routes, be sure to
include bgp route-reflector allow-outbound-policy in router bgp mode.

Route maps are an ordered list of route map entries. Each entry may specify up
to four distinct sets of clauses:

	Matching Conditions
	A route-map entry may, optionally, specify one or more conditions which
must be matched if the entry is to be considered further, as governed by
the Match Policy. If a route-map entry does not explicitly specify any
matching conditions, then it always matches.

	Set Actions
	A route-map entry may, optionally, specify one or more Set Actions to set
or modify attributes of the route.

	Matching Policy
	This specifies the policy implied if the Matching Conditions are
met or not met, and which actions of the route-map are to be taken, if
any. The two possibilities are:

	permit: If the entry matches, then carry out the
Set Actions. Then finish processing the route-map, permitting
the route, unless an Exit Policy action indicates otherwise.

	deny: If the entry matches, then finish processing the route-map and
deny the route (return deny).

The Matching Policy is specified as part of the command which defines
the ordered entry in the route-map. See below.

	Call Action
	Call to another route-map, after any Set Actions have been
carried out. If the route-map called returns deny then processing of
the route-map finishes and the route is denied, regardless of the
Matching Policy or the Exit Policy. If the called
route-map returns permit, then Matching Policy and Exit
Policy govern further behaviour, as normal.

	Exit Policy
	An entry may, optionally, specify an alternative Exit Policy to
take if the entry matched, rather than the normal policy of exiting the
route-map and permitting the route. The two possibilities are:

	next: Continue on with processing of the route-map entries.

	goto N: Jump ahead to the first route-map entry whose order in
the route-map is >= N. Jumping to a previous entry is not permitted.

The default action of a route-map, if no entries match, is to deny. I.e. a
route-map essentially has as its last entry an empty deny entry, which
matches all routes. To change this behaviour, one must specify an empty
permit entry as the last entry in the route-map.

To summarise the above:

	
	Match

	No Match

	Permit

	action

	cont

	Deny

	deny

	cont

	action
	
	Apply set statements

	If call is present, call given route-map. If that returns a deny,
finish processing and return deny.

	If Exit Policy is next, goto next route-map entry

	If Exit Policy is goto, goto first entry whose order in the
list is >= the given order.

	Finish processing the route-map and permit the route.

	deny
	The route is denied by the route-map (return deny).

	cont
	goto next route-map entry

	
show route-map [WORD] [json]

	Display data about each daemons knowledge of individual route-maps.
If WORD is supplied narrow choice to that particular route-map.

If the json option is specified, output is displayed in JSON format.

	
clear route-map counter [WORD]

	Clear counters that are being stored about the route-map utilization
so that subsuquent show commands will indicate since the last clear.
If WORD is specified clear just that particular route-map’s counters.

Route Map Command

	
route-map ROUTE-MAP-NAME (permit|deny) ORDER

	Configure the order’th entry in route-map-name with Match Policy of
either permit or deny.

Route Map Match Command

	
match ip address ACCESS_LIST

	Matches the specified access_list

	
match ip address prefix-list PREFIX_LIST

	Matches the specified PREFIX_LIST

	
match ip address prefix-len 0-32

	Matches the specified prefix-len. This is a Zebra specific command.

	
match ipv6 address ACCESS_LIST

	Matches the specified access_list

	
match ipv6 address prefix-list PREFIX_LIST

	Matches the specified PREFIX_LIST

	
match ipv6 address prefix-len 0-128

	Matches the specified prefix-len. This is a Zebra specific command.

	
match ip next-hop ACCESS_LIST

	Match the next-hop according to the given access-list.

	
match ip next-hop address IPV4_ADDR

	This is a BGP specific match command. Matches the specified ipv4_addr.

	
match ip next-hop prefix-list PREFIX_LIST

	Match the next-hop according to the given prefix-list.

	
match ipv6 next-hop ACCESS_LIST

	Match the next-hop according to the given access-list.

	
match ipv6 next-hop address IPV6_ADDR

	This is a BGP specific match command. Matches the specified ipv6_addr.

	
match ipv6 next-hop prefix-list PREFIX_LIST

	Match the next-hop according to the given prefix-list.

	
match as-path AS_PATH

	Matches the specified as_path.

	
match metric METRIC

	Matches the specified metric.

	
match tag TAG

	Matches the specified tag value associated with the route. This tag value
can be in the range of (1-4294967295).

	
match local-preference METRIC

	Matches the specified local-preference.

	
match community COMMUNITY_LIST

	Matches the specified community_list

	
match peer IPV4_ADDR

	This is a BGP specific match command. Matches the peer ip address
if the neighbor was specified in this manner.

	
match peer IPV6_ADDR

	This is a BGP specific match command. Matches the peer ipv6
address if the neighbor was specified in this manner.

	
match peer INTERFACE_NAME

	This is a BGP specific match command. Matches the peer
interface name specified if the neighbor was specified
in this manner.

	
match peer PEER_GROUP_NAME

	This is a BGP specific match command. Matches the peer
group name specified for the peer in question.

	
match source-protocol PROTOCOL_NAME

	This is a ZEBRA and BGP specific match command. Matches the
originating protocol specified.

	
match source-instance NUMBER

	This is a ZEBRA specific match command. The number is a range from (0-255).
Matches the originating protocols instance specified.

	
match evpn route-type ROUTE_TYPE_NAME

	This is a BGP EVPN specific match command. It matches to EVPN route-type
from type-1 (EAD route-type) to type-5 (Prefix route-type).
User can provide in an integral form (1-5) or string form of route-type
(i.e ead, macip, multicast, es, prefix).

	
match evpn vni NUMBER

	This is a BGP EVPN specific match command which matches to EVPN VNI id.
The number is a range from (1-6777215).

Route Map Set Command

	
set tag TAG

	Set a tag on the matched route. This tag value can be from (1-4294967295).
Additionally if you have compiled with the --enable-realms
configure option. Tag values from (1-255) are sent to the Linux kernel as a
realm value. Then route policy can be applied. See the tc man page. As
a note realms cannot currently be used with the installation of nexthops
as nexthop groups in the linux kernel.

	
set ip next-hop IPV4_ADDRESS

	Set the BGP nexthop address to the specified IPV4_ADDRESS. For both
incoming and outgoing route-maps.

	
set ip next-hop peer-address

	Set the BGP nexthop address to the address of the peer. For an incoming
route-map this means the ip address of our peer is used. For an outgoing
route-map this means the ip address of our self is used to establish the
peering with our neighbor.

	
set ip next-hop unchanged

	Set the route-map as unchanged. Pass the route-map through without
changing it’s value.

	
set ipv6 next-hop peer-address

	Set the BGP nexthop address to the address of the peer. For an incoming
route-map this means the ipv6 address of our peer is used. For an outgoing
route-map this means the ip address of our self is used to establish the
peering with our neighbor.

	
set ipv6 next-hop prefer-global

	For Incoming and Import Route-maps if we receive a v6 global and v6 LL
address for the route, then prefer to use the global address as the nexthop.

	
set ipv6 next-hop global IPV6_ADDRESS

	Set the next-hop to the specified IPV6_ADDRESS for both incoming and
outgoing route-maps.

	
set local-preference LOCAL_PREF

	Set the BGP local preference to local_pref.

	
set local-preference +LOCAL_PREF

	Add the BGP local preference to an existing local_pref.

	
set local-preference -LOCAL_PREF

	Subtract the BGP local preference from an existing local_pref.

	
set distance (1-255)

	Set the Administrative distance to use for the route.
This is only locally significant and will not be dispersed to peers.

	
set weight WEIGHT

	Set the route’s weight.

	

 Affinity Maps

Affinity Maps

Affinity maps provide a means of configuring Standard Admininistrative-Group
(RFC3630, RFC5305 and RFC5329) and Extended Admininistrative-Group (RFC7308).
An affinity-map maps a specific bit position to a human readable-name.

An affinity refers to a color or a ressource class in the Traffic Engineering
terminology. The bit position means the position of the bit set starting from
the least significant bit. For example, if the affinity ‘blue’ has bit position
0 the extended Admin-Group value will be 0x01. If the affinity ‘red’ bit
position 2 was added to a link in combination with the ‘blue’ affinity, the
Admin-Group value would be 0x05.

Command

	
affinity-map NAME bit-position (0-1023)

	Map the affinity name NAME to the bit-position. The bit-position is the key
so that only one name can be mapped to particular bit-position.

	
no affinity-map NAME

	Remove the affinity-map mapping.

Affinity-maps with a bit-position value higher than 31 are not compatible with
Standard Admininistrative-Group. The CLI disallow the usage of such
affinity-maps when Standard Admininistrative-Groups are required.

 IPv6 Support

IPv6 Support

FRR fully supports IPv6 routing. As described so far, FRR supports RIPng,
OSPFv3, and BGP-4+. You can give IPv6 addresses to an interface and configure
static IPv6 routing information. FRR IPv6 also provides automatic address
configuration via a feature called address auto configuration. To do it,
the router must send router advertisement messages to the all nodes that exist
on the network.

Previous versions of FRR could be built without IPv6 support. This is
no longer possible.

Router Advertisement

	

 Kernel Interface

Kernel Interface

There are several different methods for reading kernel routing table
information, updating kernel routing tables, and for looking up interfaces.
FRR relies heavily on the Netlink (man 7 netlink) interface to
communicate with the Kernel. However, other interfaces are still used
in some parts of the code.

	
	ioctl
	This method is a very traditional way for reading or writing kernel
information. ioctl can be used for looking up interfaces and for
modifying interface addresses, flags, mtu settings and other types of
information. Also, ioctl can insert and delete kernel routing table
entries. It will soon be available on almost any platform which zebra
supports, but it is a little bit ugly thus far, so if a better method is
supported by the kernel, zebra will use that.

	
	sysctl
	This is a program that can lookup kernel information using MIB (Management
Information Base) syntax. Normally, it only provides a way of getting
information from the kernel. So one would usually want to change kernel
information using another method such as ioctl.

	
	proc filesystem
	This is a special filesystem mount that provides an easy way of getting
kernel information.

	
	routing socket / Netlink
	Netlink first appeard in Linux kernel 2.0. It makes asynchronous
communication between the kernel and FRR possible, similar to a routing
socket on BSD systems. Netlink communication is done by reading/writing
over Netlink socket.

 SNMP Support

SNMP Support

SNMP is a widely implemented feature
for collecting network information from router and/or host. FRR itself does
not support SNMP agent (server daemon) functionality but is able to connect to
a SNMP agent using the the AgentX protocol (RFC 2741 [https://tools.ietf.org/html/rfc2741.html]) and make the
routing protocol MIBs available through it.

Note that SNMP Support needs to be enabled at compile-time and loaded as module
on daemon startup. Refer to Loadable Module Support on the latter. If
you do not start the daemons with snmp module support snmp will not work
properly.

Getting and installing an SNMP agent

The supported SNMP agent is AgentX. We recommend to use
the latest version of net-snmp which was formerly known as ucd-snmp. It is
free and open software and available at http://www.net-snmp.org/
and as binary package for most Linux distributions.

NET-SNMP configuration

Routers with a heavy amount of routes (e.g. BGP full table) might experience
problems with a hanging vtysh from time to time, 100% CPU on the snmpd or
even crashes of the frr daemon(s) due to stalls within AgentX. Once snmp
agents connects they start receiving a heavy amount of SNMP data (all the
routes) which cannot be handled quick enough. It’s recommended (by several
vendors as well) to exclude these OID’s unless you really need them, which
can be achieved by amending the default view from SNMP

/etc/snmp/snmpd.conf:

This is the default view
view all included .1 80
Remove ipRouteTable from view
view all excluded .1.3.6.1.2.1.4.21
Remove ipNetToMediaTable from view
view all excluded .1.3.6.1.2.1.4.22
Remove ipNetToPhysicalPhysAddress from view
view all excluded .1.3.6.1.2.1.4.35
Remove ipCidrRouteTable from view
view all excluded .1.3.6.1.2.1.4.24
Optionally protect SNMP private/secret values
view all excluded .1.3.6.1.6.3.15
view all excluded .1.3.6.1.6.3.16
view all excluded .1.3.6.1.6.3.18
Optionally allow SNMP public info (sysName, location, etc)
view system included .iso.org.dod.internet.mgmt.mib-2.system

AgentX configuration

To enable AgentX protocol support, FRR must have been build with the
--enable-snmp or –enable-snmp=agentx option. Both the
master SNMP agent (snmpd) and each of the FRR daemons must be configured. In
/etc/snmp/snmpd.conf, the master agentx directive should be added.
In each of the FRR daemons, agentx command will enable AgentX support.

/etc/snmp/zebra.conf:

#
example access restrictions setup
#
com2sec readonly default public
group MyROGroup v1 readonly
view all included .1 80
access MyROGroup "" any noauth exact all none none
#
enable master agent for AgentX subagents
#
master agentx

/etc/frr/ospfd.conf:

! ... the rest of ospfd.conf has been omitted for clarity ...
!
agentx
!

Upon successful connection, you should get something like this in the log of
each FRR daemons:

2012/05/25 11:39:08 ZEBRA: snmp[info]: NET-SNMP version 5.4.3 AgentX subagent connected

Then, you can use the following command to check everything works as expected:

snmpwalk -c public -v1 localhost .1.3.6.1.2.1.14.1.1
OSPF-MIB::ospfRouterId.0 = IpAddress: 192.168.42.109
[...]

An example below is how to query SNMP for BGP:

$ # BGP4-MIB (https://www.circitor.fr/Mibs/Mib/B/BGP4-MIB.mib)
$ snmpwalk -c public -v2c -On -Ln localhost .1.3.6.1.2.1.15

$ # BGP4V2-MIB (http://www.circitor.fr/Mibs/Mib/B/BGP4V2-MIB.mib)
$ # Information about the peers (bgp4V2PeerTable):
$ snmpwalk -c public -v2c -On -Ln localhost .1.3.6.1.3.5.1.1.2
...
.1.3.6.1.3.5.1.1.2.1.1.1.4.192.168.10.124 = Gauge32: 0
.1.3.6.1.3.5.1.1.2.1.1.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Gauge32: 0
.1.3.6.1.3.5.1.1.2.1.2.1.4.192.168.10.124 = INTEGER: 1
.1.3.6.1.3.5.1.1.2.1.2.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = INTEGER: 2
.1.3.6.1.3.5.1.1.2.1.3.1.4.192.168.10.124 = Hex-STRING: C0 A8 0A 11
.1.3.6.1.3.5.1.1.2.1.3.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Hex-STRING: 2A 02 47 80 0A BC 00 00 00 00 00 00 00 00 00 01
.1.3.6.1.3.5.1.1.2.1.4.1.4.192.168.10.124 = INTEGER: 1
.1.3.6.1.3.5.1.1.2.1.4.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = INTEGER: 2
.1.3.6.1.3.5.1.1.2.1.5.1.4.192.168.10.124 = Hex-STRING: C0 A8 0A 7C
.1.3.6.1.3.5.1.1.2.1.5.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Hex-STRING: 2A 02 47 80 0A BC 00 00 00 00 00 00 00 00 00 02
.1.3.6.1.3.5.1.1.2.1.6.1.4.192.168.10.124 = Gauge32: 179
.1.3.6.1.3.5.1.1.2.1.6.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Gauge32: 179
.1.3.6.1.3.5.1.1.2.1.7.1.4.192.168.10.124 = Gauge32: 65002
.1.3.6.1.3.5.1.1.2.1.7.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Gauge32: 65002
.1.3.6.1.3.5.1.1.2.1.8.1.4.192.168.10.124 = Hex-STRING: C0 A8 0A 11
.1.3.6.1.3.5.1.1.2.1.8.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Hex-STRING: C0 A8 0A 11
.1.3.6.1.3.5.1.1.2.1.9.1.4.192.168.10.124 = Gauge32: 41894
.1.3.6.1.3.5.1.1.2.1.9.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Gauge32: 39960
.1.3.6.1.3.5.1.1.2.1.10.1.4.192.168.10.124 = Gauge32: 65001
.1.3.6.1.3.5.1.1.2.1.10.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Gauge32: 65001
.1.3.6.1.3.5.1.1.2.1.11.1.4.192.168.10.124 = Hex-STRING: C8 C8 C8 CA
.1.3.6.1.3.5.1.1.2.1.11.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Hex-STRING: C8 C8 C8 CA
.1.3.6.1.3.5.1.1.2.1.12.1.4.192.168.10.124 = INTEGER: 2
.1.3.6.1.3.5.1.1.2.1.12.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = INTEGER: 2
.1.3.6.1.3.5.1.1.2.1.13.1.4.192.168.10.124 = INTEGER: 6
.1.3.6.1.3.5.1.1.2.1.13.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = INTEGER: 6

$ # Information about the BGP table (bgp4V2NlriTable):
$ snmpwalk -c public -v2c -On -Ln localhost .1.3.6.1.3.5.1.1.9
...
.1.3.6.1.3.5.1.1.9.1.22.1.4.10.0.2.0.24.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.10.10.100.0.24.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.172.16.31.1.32.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.172.16.31.2.32.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.172.16.31.3.32.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.192.168.0.0.24.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.192.168.1.0.24.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.1.4.192.168.10.0.24.192.168.10.124 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.22.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.0.64.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Gauge32: 1
.1.3.6.1.3.5.1.1.9.1.24.1.4.10.0.2.0.24.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.10.10.100.0.24.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.172.16.31.1.32.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.172.16.31.2.32.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.172.16.31.3.32.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.192.168.0.0.24.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.192.168.1.0.24.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.1.4.192.168.10.0.24.192.168.10.124 = Hex-STRING: 02 01 FD E9
.1.3.6.1.3.5.1.1.9.1.24.2.16.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.0.64.42.2.71.128.10.188.0.0.0.0.0.0.0.0.0.2 = Hex-STRING: 02 01 FD E9

The AgentX protocol can be transported over a Unix socket or using TCP or UDP.
It usually defaults to a Unix socket and depends on how NetSNMP was built. If
need to configure FRR to use another transport, you can configure it through
/etc/snmp/frr.conf:

[snmpd]
Use a remote master agent
agentXSocket tcp:192.168.15.12:705

Here is the syntax for using AgentX:

	
agentx

	Once enabled, it can’t be unconfigured. Only removing from the daemons file
the keyword agentx takes an effect.

Handling SNMP Traps

To handle snmp traps make sure your snmp setup of frr works correctly as
described in the frr documentation in SNMP Support.

The BGP4 mib will send traps on peer up/down events. These should be visible in
your snmp logs with a message similar to:

snmpd[13733]: Got trap from peer on fd 14

To react on these traps they should be handled by a trapsink. Configure your
trapsink by adding the following lines to /etc/snmpd/snmpd.conf:

send traps to the snmptrapd on localhost
trapsink localhost

This will send all traps to an snmptrapd running on localhost. You can of
course also use a dedicated management station to catch traps. Configure the
snmptrapd daemon by adding the following line to
/etc/snmpd/snmptrapd.conf:

traphandle .1.3.6.1.4.1.3317.1.2.2 /etc/snmp/snmptrap_handle.sh

This will use the bash script /etc/snmp/snmptrap_handle.sh to handle
the BGP4 traps. To add traps for other protocol daemons, lookup their
appropriate OID from their mib. (For additional information about which traps
are supported by your mib, lookup the mib on
http://www.oidview.com/mibs/detail.html).

Make sure snmptrapd is started.

The snmptrap_handle.sh script I personally use for handling BGP4 traps is
below. You can of course do all sorts of things when handling traps, like sound
a siren, have your display flash, etc., be creative ;).

#!/bin/bash

routers name
ROUTER=`hostname -s`

#email address use to sent out notification
EMAILADDR="john@doe.com"
#email address used (allongside above) where warnings should be sent
EMAILADDR_WARN="sms-john@doe.com"

type of notification
TYPE="Notice"

local snmp community for getting AS belonging to peer
COMMUNITY="<community>"

if a peer address is in $WARN_PEERS a warning should be sent
WARN_PEERS="192.0.2.1"

get stdin
INPUT=`cat -`

get some vars from stdin
uptime=`echo $INPUT | cut -d' ' -f5`
peer=`echo $INPUT | cut -d' ' -f8 | sed -e 's/SNMPv2-SMI::mib-2.15.3.1.14.//g'`
peerstate=`echo $INPUT | cut -d' ' -f13`
errorcode=`echo $INPUT | cut -d' ' -f9 | sed -e 's/\\"//g'`
suberrorcode=`echo $INPUT | cut -d' ' -f10 | sed -e 's/\\"//g'`
remoteas=`snmpget -v2c -c $COMMUNITY localhost SNMPv2-SMI::mib-2.15.3.1.9.$peer | cut -d' ' -f4`

WHOISINFO=`whois -h whois.ripe.net " -r AS$remoteas" | egrep '(as-name|descr)'`
asname=`echo "$WHOISINFO" | grep "^as-name:" | sed -e 's/^as-name://g' -e 's/ //g' -e 's/^ //g' | uniq`
asdescr=`echo "$WHOISINFO" | grep "^descr:" | sed -e 's/^descr://g' -e 's/ //g' -e 's/^ //g' | uniq`

if peer address is in $WARN_PEER, the email should also
be sent to $EMAILADDR_WARN
for ip in $WARN_PEERS; do
if ["x$ip" == "x$peer"]; then
EMAILADDR="$EMAILADDR,$EMAILADDR_WARN"
TYPE="WARNING"
break
fi
done

convert peer state
case "$peerstate" in
1) peerstate="Idle" ;;
2) peerstate="Connect" ;;
3) peerstate="Active" ;;
4) peerstate="Opensent" ;;
5) peerstate="Openconfirm" ;;
6) peerstate="Established" ;;
*) peerstate="Unknown" ;;
esac

get textual messages for errors
case "$errorcode" in
00)
error="No error"
suberror=""
;;
01)
error="Message Header Error"
case "$suberrorcode" in
01) suberror="Connection Not Synchronized" ;;
02) suberror="Bad Message Length" ;;
03) suberror="Bad Message Type" ;;
*) suberror="Unknown" ;;
esac
;;
02)
error="OPEN Message Error"
case "$suberrorcode" in
01) suberror="Unsupported Version Number" ;;
02) suberror="Bad Peer AS" ;;
03) suberror="Bad BGP Identifier" ;;
04) suberror="Unsupported Optional Parameter" ;;
05) suberror="Authentication Failure" ;;
06) suberror="Unacceptable Hold Time" ;;
*) suberror="Unknown" ;;
esac
;;
03)
error="UPDATE Message Error"
case "$suberrorcode" in
01) suberror="Malformed Attribute List" ;;
02) suberror="Unrecognized Well-known Attribute" ;;
03) suberror="Missing Well-known Attribute" ;;
04) suberror="Attribute Flags Error" ;;
05) suberror="Attribute Length Error" ;;
06) suberror="Invalid ORIGIN Attribute" ;;
07) suberror="AS Routing Loop" ;;
08) suberror="Invalid NEXT_HOP Attribute" ;;
09) suberror="Optional Attribute Error" ;;
10) suberror="Invalid Network Field" ;;
11) suberror="Malformed AS_PATH" ;;
*) suberror="Unknown" ;;
esac
;;
04)
error="Hold Timer Expired"
suberror=""
;;
05)
error="Finite State Machine Error"
suberror=""
;;
06)
error="Cease"
case "$suberrorcode" in
01) suberror="Maximum Number of Prefixes Reached" ;;
02) suberror="Administrative Shutdown" ;;
03) suberror="Peer De-configured" ;;
04) suberror="Administrative Reset" ;;
05) suberror="Connection Rejected" ;;
06) suberror="Other Configuration Change" ;;
07) suberror="Connection Collision Resolution" ;;
08) suberror="Out of Resources" ;;
09) suberror="MAX" ;;
*) suberror="Unknown" ;;
esac
;;
*)
error="Unknown"
suberror=""
;;
esac

create textual message from errorcodes
if ["x$suberror" == "x"]; then
NOTIFY="$errorcode ($error)"
else
NOTIFY="$errorcode/$suberrorcode ($error/$suberror)"
fi

form a decent subject
SUBJECT="$TYPE: $ROUTER [bgp] $peer is $peerstate: $NOTIFY"
create the email body
MAIL=`cat << EOF
BGP notification on router $ROUTER.

Peer: $peer
AS: $remoteas
New state: $peerstate
Notification: $NOTIFY

Info:
$asname
$asdescr

Snmpd uptime: $uptime
EOF`

mail the notification
echo "$MAIL" | mail -s "$SUBJECT" $EMAILADDR

 Scripting

Scripting

The behavior of FRR may be extended or customized using its built-in scripting
capabilities. The scripting language is Lua 5.3. This guide assumes Lua
knowledge. For more information on Lua, consult the Lua 5.3 reference manual, or
Programming in Lua (note that the free version covers only Lua 5.0).

https://www.lua.org/manual/5.3/

http://www.lua.org/pil/contents.html

Scripting

See also

Developer docs for scripting

How to use

	Identify the Lua function name. See Available Lua hook calls.

	Write the Lua script

	Configure FRR to use the Lua script

In order to use scripting, FRR must be built with --enable-scripting.

Note

Scripts are typically loaded just-in-time. This means you can change the
contents of a script that is in use without restarting FRR. Not all
scripting locations may behave this way; refer to the documentation for the
particular location.

Example: on_rib_process_dplane_results

This example shows how to write a Lua script that logs changes when a route is
added.

First, identify the Lua hook call to attach a Lua function to: this will be the
name of the Lua function. In this case, since the hook call is
on_rib_process_dplane_results:

function on_rib_process_dplane_results(ctx)
 log.info(ctx.rinfo.zd_dest.network)
 return {}

The documentation for on_rib_process_dplane_results tells us its
arguments. Here, the destination prefix for a route is being logged out.

Scripts live in /etc/frr/scripts/ by default. This is configurable at
compile time via --with-scriptdir. It may be overridden at runtime with the
--scriptdir daemon option.

The documentation for on_rib_process_dplane_results indicates that the
script command should be used to set the script. Assuming that the above
function was created in /etc/frr/scripts/my_dplane_script.lua, the
following vtysh command sets the script for the hook call:

script on_rib_process_dplane_results my_dplane_script

After the script is set, when the hook call is hit, FRR will look for a
on_rib_process_dplane_results function in
/etc/frr/scripts/my_dplane_script.lua and run it with the ctx object
as its argument.

Available Lua hook calls

on_rib_process_dplane_results

 Nexthop Groups

Nexthop Groups

Nexthop groups are a way to encapsulate ECMP information together. It’s a
listing of ECMP nexthops used to forward packets.

	
nexthop-group NAME

	Create a nexthop-group with an associated NAME. This will put you into a
sub-mode where you can specify individual nexthops. To exit this mode type
exit or end as per normal conventions for leaving a sub-mode.

	
nexthop [A.B.C.D|X:X::X:XX] [interface [onlink]] [nexthop-vrf NAME] [label LABELS]

	Create a v4 or v6 nexthop. All normal rules for creating nexthops that you
are used to are allowed here. The syntax was intentionally kept the same as
creating nexthops as you would for static routes.

	
resilient buckets (1-256) idle-timer (1-4294967295) unbalanced-timer (1-4294967295)

	Create a resilient Nexthop Group with the specified number of buckets, and
associated timers. Instead of using the normal kernel hashing methodology
this specifies that X buckets will be created for the nexthop group and
when a nexthop is lost the buckets forwarding that particular nexthop
will be automatically re-assigned. This cli command must be the first
command entered currently. Additionally this command only works with linux 5.19
kernels or newer.

 Zebra

Zebra

zebra is an IP routing manager. It provides kernel routing
table updates, interface lookups, and redistribution of routes between
different routing protocols.

Invoking zebra

Besides the common invocation options (Common Invocation Options), the
zebra specific invocation options are listed below.

	
-b, --batch

	Runs in batch mode. zebra parses configuration file and terminates
immediately.

	
-K TIME, --graceful_restart TIME

	If this option is specified, the graceful restart time is TIME seconds.
Zebra, when started, will read in routes. Those routes that Zebra
identifies that it was the originator of will be swept in TIME seconds.
If no time is specified then we will sweep those routes immediately.
Under the *BSD’s, there is no way to properly store the originating
route and the route types in this case will show up as a static route
with an admin distance of 255.

	
-r, --retain

	When program terminates, do not flush routes installed by zebra from the
kernel.

	
-e X, --ecmp X

	Run zebra with a limited ecmp ability compared to what it is compiled to.
If you are running zebra on hardware limited functionality you can
force zebra to limit the maximum ecmp allowed to X. This number
is bounded by what you compiled FRR with as the maximum number.

	
-n, --vrfwnetns

	When Zebra starts with this option, the VRF backend is based on Linux
network namespaces. That implies that all network namespaces discovered by
ZEBRA will create an associated VRF. The other daemons will operate on the VRF
VRF defined by Zebra, as usual.

See also

Virtual Routing and Forwarding

	
-z <path_to_socket>, --socket <path_to_socket>

	If this option is supplied on the cli, the path to the zebra
control socket(zapi), is used. This option overrides a -N <namespace>
option if handed to it on the cli.

	
--v6-rr-semantics

	The linux kernel is receiving the ability to use the same route
replacement semantics for v6 that v4 uses. If you are using a
kernel that supports this functionality then run Zebra with this
option and we will use Route Replace Semantics instead of delete
than add.

	
--asic-offload=[notify_on_offload|notify_on_ack]

	The linux kernel has the ability to use asic-offload (see switchdev
development). When the operator knows that FRR will be working in
this way, allow them to specify this with FRR. At this point this
code only supports asynchronous notification of the offload state.
In other words the initial ACK received for linux kernel installation
does not give zebra any data about what the state of the offload
is. This option takes the optional parameters notify_on_offload
or notify_on_ack. This signals to zebra to notify upper level
protocols about route installation/update on ack received from
the linux kernel or from offload notification.

	
-s <SIZE>, --nl-bufsize <SIZE>

	Allow zebra to modify the default receive buffer size to SIZE
in bytes. Under *BSD only the -s option is available.

Configuration Addresses behaviour

At startup, Zebra will first discover the underlying networking objects
from the operating system. This includes interfaces, addresses of
interfaces, static routes, etc. Then, it will read the configuration
file, including its own interface addresses, static routes, etc. All this
information comprises the operational context from Zebra. But
configuration context from Zebra will remain the same as the one from
zebra.conf config file. As an example, executing the following
show running-config will reflect what was in zebra.conf.
In a similar way, networking objects that are configured outside of the
Zebra like iproute2 will not impact the configuration context from
Zebra. This behaviour permits you to continue saving your own config
file, and decide what is really to be pushed on the config file, and what
is dependent on the underlying system.
Note that inversely, from Zebra, you will not be able to delete networking
objects that were previously configured outside of Zebra.

Interface Commands

Standard Commands

	
interface IFNAME

	

	
interface IFNAME vrf VRF

	

	
shutdown

	Up or down the current interface.

	
ip address ADDRESS/PREFIX

	

	
ipv6 address ADDRESS/PREFIX

	Set the IPv4 or IPv6 address/prefix for the interface.

	
ip address LOCAL-ADDR peer PEER-ADDR/PREFIX

	Configure an IPv4 Point-to-Point address on the interface. (The concept of
PtP addressing does not exist for IPv6.)

local-addr has no subnet mask since the local side in PtP addressing is
always a single (/32) address. peer-addr/prefix can be an arbitrary subnet
behind the other end of the link (or even on the link in Point-to-Multipoint
setups), though generally /32s are used.

	
description DESCRIPTION ...

	Set description for the interface.

	
mpls enable

	Enable or disable mpls kernel processing on the interface, for linux. Interfaces
configured with mpls will not automatically turn on if mpls kernel modules do not
happen to be loaded. This command will fail on 3.X linux kernels and does not
work on non-linux systems at all.

	
multicast

	Enable or disable multicast flag for the interface.

	
bandwidth (1-10000000)

	Set bandwidth value of the interface in kilobits/sec. This is for
calculating OSPF cost. This command does not affect the actual device
configuration.

	
link-detect

	Enable or disable link-detect on platforms which support this. Currently only
Linux, and only where network interface drivers support reporting
link-state via the IFF_RUNNING flag.

In FRR, link-detect is on by default.

Link Parameters Commands

Note

At this time, FRR offers partial support for some of the routing
protocol extensions that can be used with MPLS-TE. FRR does not
support a complete RSVP-TE solution currently.

	
link-params

	Enter into the link parameters sub node. At least ‘enable’ must be
set to activate the link parameters, and consequently routing
information that could be used as part of Traffic Engineering on
this interface. MPLS-TE must be enable at the OSPF
(Traffic Engineering) or ISIS
(Traffic Engineering) router level in complement to
this.

Under link parameter statement, the following commands set the different TE values:

	
enable

	Enable link parameters for this interface.

	
metric (0-4294967295)

	

	
max-bw BANDWIDTH

	

	
max-rsv-bw BANDWIDTH

	

	
unrsv-bw (0-7) BANDWIDTH

	These commands specifies the Traffic Engineering parameters of the interface
in conformity to RFC3630 (OSPF) or RFC5305 (ISIS). There are respectively
the TE Metric (different from the OSPF or ISIS metric), Maximum Bandwidth
(interface speed by default), Maximum Reservable Bandwidth, Unreserved
Bandwidth for each 0-7 priority and Admin Group (ISIS) or Resource
Class/Color (OSPF).

Note that BANDWIDTH is specified in IEEE floating point format and express
in Bytes/second.

	
admin-grp 0x(0-FFFFFFFF)

	This commands configures the Traffic Engineering Admin-Group of the interface
as specified in RFC3630 (OSPF) or RFC5305 (ISIS). Admin-group is also known
as Resource Class/Color in the OSPF protocol.

	
[no] affinity AFFINITY-MAP-NAME

	This commands configures the Traffic Engineering Admin-Group of the
interface using the affinity-map definitions (Affinity Maps).
Multiple AFFINITY-MAP-NAME can be specified at the same time. Affinity-map
names are added or removed if no is present. It means that specifying one
value does not override the full list.

admin-grp and affinity commands provide two ways of setting
admin-groups. They cannot be both set on the same interface.

	
[no] affinity-mode [extended|standard|both]

	This commands configures which admin-group format is set by the affinity
command. extended Admin-Group is the default and uses the RFC7308 format.
standard mode uses the standard admin-group format that is defined by
RFC3630, RFC5305 and RFC5329. When the standard mode is set,
affinity-maps with bit-positions higher than 31 cannot be applied to the
interface. The both mode allows setting standard and extended admin-group
on the link at the same time. In this case, the bit-positions 0 to 31 are
the same on standard and extended admin-groups.

Note that extended admin-groups are only supported by IS-IS for the moment.

	
delay (0-16777215) [min (0-16777215) | max (0-16777215)]

	

	
delay-variation (0-16777215)

	

	
packet-loss PERCENTAGE

	

	
res-bw BANDWIDTH

	

	
ava-bw BANDWIDTH

	

	
use-bw BANDWIDTH

	These command specifies additional Traffic Engineering parameters of the
interface in conformity to draft-ietf-ospf-te-metrics-extension-05.txt and
draft-ietf-isis-te-metrics-extension-03.txt. There are respectively the
delay, jitter, loss, available bandwidth, reservable bandwidth and utilized
bandwidth.

Note that BANDWIDTH is specified in IEEE floating point format and express
in Bytes/second. Delays and delay variation are express in micro-second
(µs). Loss is specified in PERCENTAGE ranging from 0 to 50.331642% by step
of 0.000003.

	

 Bidirectional Forwarding Detection

Bidirectional Forwarding Detection

BFD stands for
Bidirectional Forwarding Detection and it is described and extended by
the following RFCs:

	RFC 5880 [https://tools.ietf.org/html/rfc5880.html]

	RFC 5881 [https://tools.ietf.org/html/rfc5881.html]

	RFC 5882 [https://tools.ietf.org/html/rfc5882.html]

	RFC 5883 [https://tools.ietf.org/html/rfc5883.html]

Currently, there are two implementations of the BFD commands in FRR:

	PTM: an external daemon which
implements BFD;

	bfdd: a BFD implementation that is able to talk with remote peers;

This document will focus on the later implementation: bfdd.

Starting BFD

bfdd default configuration file is bfdd.conf. bfdd searches
the current directory first then /etc/frr/bfdd.conf. All of
bfdd’s command must be configured in bfdd.conf.

bfdd specific invocation options are described below. Common options
may also be specified (Common Invocation Options).

	
--bfdctl <unix-socket>

	Set the BFD daemon control socket location. If using a non-default
socket location:

/usr/lib/frr/bfdd --bfdctl /tmp/bfdd.sock

The default UNIX socket location is:

#define BFDD_CONTROL_SOCKET “/var/run/frr/bfdd.sock”

This option overrides the location addition that the -N option provides
to the bfdd.sock

	
--dplaneaddr <type>:<address>[<:port>]

	Configure the distributed BFD data plane listening socket bind address.

One would expect the data plane to run in the same machine as FRR, so
the suggested configuration would be:

–dplaneaddr unix:/var/run/frr/bfdd_dplane.sock

Or using IPv4:

–dplaneaddr ipv4:127.0.0.1

Or using IPv6:

–dplaneaddr ipv6:[::1]

It is also possible to specify a port (for IPv4/IPv6 only):

–dplaneaddr ipv6:[::1]:50701

(if ommited the default port is 50700).

It is also possible to operate in client mode (instead of listening for
connections). To connect to a data plane server append the letter ‘c’ to
the protocol, example:

–dplaneaddr ipv4c:127.0.0.1

Note

When using UNIX sockets don’t forget to check the file permissions
before attempting to use it.

BFDd Commands

	
bfd

	Opens the BFD daemon configuration node.

	

 BGP

BGP

BGP stands for Border Gateway Protocol. The latest BGP version is 4.
BGP-4 is one of the Exterior Gateway Protocols and the de facto standard
interdomain routing protocol. BGP-4 is described in RFC 1771 [https://tools.ietf.org/html/rfc1771.html] and updated by
RFC 4271 [https://tools.ietf.org/html/rfc4271.html]. RFC 2858 [https://tools.ietf.org/html/rfc2858.html] adds multiprotocol support to BGP-4.

Starting BGP

The default configuration file of bgpd is bgpd.conf. bgpd searches
the current directory first, followed by /etc/frr/bgpd.conf. All of
bgpd’s commands must be configured in bgpd.conf when the integrated
config is not being used.

bgpd specific invocation options are described below. Common options may also
be specified (Common Invocation Options).

	
-p, --bgp_port <port>

	Set the bgp protocol’s port number. When port number is 0, that means do not
listen bgp port.

	
-l, --listenon

	Specify specific IP addresses for bgpd to listen on, rather than its default
of 0.0.0.0 / ::. This can be useful to constrain bgpd to an internal
address, or to run multiple bgpd processes on one host. Multiple addresses
can be specified.

In the following example, bgpd is started listening for connections on the
addresses 100.0.1.2 and fd00::2:2. The options -d (runs in daemon mode) and
-f (uses specific configuration file) are also used in this example as we
are likely to run multiple bgpd instances, each one with different
configurations, when using -l option.

Note that this option implies the –no_kernel option, and no learned routes will be installed into the linux kernel.

/usr/lib/frr/bgpd -d -f /some-folder/bgpd.conf -l 100.0.1.2 -l fd00::2:2

	
-n, --no_kernel

	Do not install learned routes into the linux kernel. This option is useful
for a route-reflector environment or if you are running multiple bgp
processes in the same namespace. This option is different than the –no_zebra
option in that a ZAPI connection is made.

This option can also be toggled during runtime by using the
[no] bgp no-rib commands in VTY shell.

Note that this option will persist after saving the configuration during
runtime, unless unset by the no bgp no-rib command in VTY shell prior to
a configuration write operation.

	
-S, --skip_runas

	Skip the normal process of checking capabilities and changing user and group
information.

	
-e, --ecmp

	Run BGP with a limited ecmp capability, that is different than what BGP
was compiled with. The value specified must be greater than 0 and less
than or equal to the MULTIPATH_NUM specified on compilation.

	
-Z, --no_zebra

	Do not communicate with zebra at all. This is different than the –no_kernel
option in that we do not even open a ZAPI connection to the zebra process.

	
-s, --socket_size

	When opening tcp connections to our peers, set the socket send buffer
size that the kernel will use for the peers socket. This option
is only really useful at a very large scale. Experimentation should
be done to see if this is helping or not at the scale you are running
at.

LABEL MANAGER

	
-I, --int_num

	Set zclient id. This is required when using Zebra label manager in proxy mode.

Basic Concepts

Autonomous Systems

From RFC 1930 [https://tools.ietf.org/html/rfc1930.html]:

An AS is a connected group of one or more IP prefixes run by one or more
network operators which has a SINGLE and CLEARLY DEFINED routing policy.

Each AS has an identifying number associated with it called an ASN. This is a two octet value ranging in value from 1
to 65535. The AS numbers 64512 through 65535 are defined as private AS numbers.
Private AS numbers must not be advertised on the global Internet.

The ASN is one of the essential elements of
BGP. BGP is a distance vector routing protocol, and the AS-Path framework
provides distance vector metric and loop detection to BGP.

See also

RFC 1930 [https://tools.ietf.org/html/rfc1930.html]

Address Families

Multiprotocol extensions enable BGP to carry routing information for multiple
network layer protocols. BGP supports an Address Family Identifier (AFI) for
IPv4 and IPv6. Support is also provided for multiple sets of per-AFI
information via the BGP Subsequent Address Family Identifier (SAFI). FRR
supports SAFIs for unicast information, labeled information (RFC 3107 [https://tools.ietf.org/html/rfc3107.html] and
RFC 8277 [https://tools.ietf.org/html/rfc8277.html]), and Layer 3 VPN information (RFC 4364 [https://tools.ietf.org/html/rfc4364.html] and RFC 4659 [https://tools.ietf.org/html/rfc4659.html]).

Route Selection

The route selection process used by FRR’s BGP implementation uses the following
decision criterion, starting at the top of the list and going towards the
bottom until one of the factors can be used.

	Weight check

Prefer higher local weight routes to lower routes.

	Local preference check

Prefer higher local preference routes to lower.

If bgp bestpath aigp is enabled, and both paths that are compared have
AIGP attribute, BGP uses AIGP tie-breaking unless both of the paths have the
AIGP metric attribute. This means that the AIGP attribute is not evaluated
during the best path selection process between two paths when one path does
not have the AIGP attribute.

	Local route check

Prefer local routes (statics, aggregates, redistributed) to received routes.

	AS path length check

Prefer shortest hop-count AS_PATHs.

	Origin check

Prefer the lowest origin type route. That is, prefer IGP origin routes to
EGP, to Incomplete routes.

	MED check

Where routes with a MED were received from the same AS, prefer the route
with the lowest MED. Multi-Exit Discriminator.

	External check

Prefer the route received from an external, eBGP peer over routes received
from other types of peers.

	IGP cost check

Prefer the route with the lower IGP cost.

	Multi-path check

If multi-pathing is enabled, then check whether the routes not yet
distinguished in preference may be considered equal. If
bgp bestpath as-path multipath-relax is set, all such routes are
considered equal, otherwise routes received via iBGP with identical AS_PATHs
or routes received from eBGP neighbours in the same AS are considered equal.

	Already-selected external check

Where both routes were received from eBGP peers, then prefer the route
which is already selected. Note that this check is not applied if
bgp bestpath compare-routerid is configured. This check can
prevent some cases of oscillation.

	Router-ID check

Prefer the route with the lowest router-ID. If the route has an
ORIGINATOR_ID attribute, through iBGP reflection, then that router ID is
used, otherwise the router-ID of the peer the route was received from is
used.

	Cluster-List length check

The route with the shortest cluster-list length is used. The cluster-list
reflects the iBGP reflection path the route has taken.

	Peer address

Prefer the route received from the peer with the higher transport layer
address, as a last-resort tie-breaker.

Capability Negotiation

When adding IPv6 routing information exchange feature to BGP. There were some
proposals. IETF
IDR adopted a proposal called Multiprotocol
Extension for BGP. The specification is described in RFC 2283 [https://tools.ietf.org/html/rfc2283.html]. The protocol
does not define new protocols. It defines new attributes to existing BGP. When
it is used exchanging IPv6 routing information it is called BGP-4+. When it is
used for exchanging multicast routing information it is called MBGP.

bgpd supports Multiprotocol Extension for BGP. So if a remote peer supports
the protocol, bgpd can exchange IPv6 and/or multicast routing information.

Traditional BGP did not have the feature to detect a remote peer’s
capabilities, e.g. whether it can handle prefix types other than IPv4 unicast
routes. This was a big problem using Multiprotocol Extension for BGP in an
operational network. RFC 2842 [https://tools.ietf.org/html/rfc2842.html] adopted a feature called Capability
Negotiation. bgpd use this Capability Negotiation to detect the remote peer’s
capabilities. If a peer is only configured as an IPv4 unicast neighbor, bgpd
does not send these Capability Negotiation packets (at least not unless other
optional BGP features require capability negotiation).

By default, FRR will bring up peering with minimal common capability for the
both sides. For example, if the local router has unicast and multicast
capabilities and the remote router only has unicast capability the local router
will establish the connection with unicast only capability. When there are no
common capabilities, FRR sends Unsupported Capability error and then resets the
connection.

BGP Router Configuration

ASN and Router ID

First of all you must configure BGP router with the router bgp ASN
command. The AS number is an identifier for the autonomous system. The AS
identifier can either be a number or two numbers separated by a period. The
BGP protocol uses the AS identifier for detecting whether the BGP connection is
internal or external.

	
router bgp ASN

	Enable a BGP protocol process with the specified ASN. After
this statement you can input any BGP Commands.

	
bgp router-id A.B.C.D

	This command specifies the router-ID. If bgpd connects to zebra it gets
interface and address information. In that case default router ID value is
selected as the largest IP Address of the interfaces. When router zebra is
not enabled bgpd can’t get interface information so router-id is set to
0.0.0.0. So please set router-id by hand.

Multiple Autonomous Systems

FRR’s BGP implementation is capable of running multiple autonomous systems at
once. Each configured AS corresponds to a Virtual Routing and Forwarding. In the past, to get
the same functionality the network administrator had to run a new bgpd
process; using VRFs allows multiple autonomous systems to be handled in a
single process.

When using multiple autonomous systems, all router config blocks after the
first one must specify a VRF to be the target of BGP’s route selection. This
VRF must be unique within respect to all other VRFs being used for the same
purpose, i.e. two different autonomous systems cannot use the same VRF.
However, the same AS can be used with different VRFs.

Note

The separated nature of VRFs makes it possible to peer a single bgpd
process to itself, on one machine. Note that this can be done fully within
BGP without a corresponding VRF in the kernel or Zebra, which enables some
practical use cases such as route reflectors
and route servers.

Configuration of additional autonomous systems, or of a router that targets a
specific VRF, is accomplished with the following command:

	
router bgp ASN vrf VRFNAME

	VRFNAME is matched against VRFs configured in the kernel. When vrf
VRFNAME is not specified, the BGP protocol process belongs to the default
VRF.

An example configuration with multiple autonomous systems might look like this:

router bgp 1
 neighbor 10.0.0.1 remote-as 20
 neighbor 10.0.0.2 remote-as 30
!
router bgp 2 vrf blue
 neighbor 10.0.0.3 remote-as 40
 neighbor 10.0.0.4 remote-as 50
!
router bgp 3 vrf red
 neighbor 10.0.0.5 remote-as 60
 neighbor 10.0.0.6 remote-as 70
...

See also

VRF Route Leaking

See also

Virtual Routing and Forwarding

Views

In addition to supporting multiple autonomous systems, FRR’s BGP implementation
also supports views.

BGP views are almost the same as normal BGP processes, except that routes
selected by BGP are not installed into the kernel routing table. Each BGP view
provides an independent set of routing information which is only distributed
via BGP. Multiple views can be supported, and BGP view information is always
independent from other routing protocols and Zebra/kernel routes. BGP views use
the core instance (i.e., default VRF) for communication with peers.

	
router bgp AS-NUMBER view NAME

	Make a new BGP view. You can use an arbitrary word for the NAME. Routes
selected by the view are not installed into the kernel routing table.

With this command, you can setup Route Server like below.

!
router bgp 1 view 1
 neighbor 10.0.0.1 remote-as 2
 neighbor 10.0.0.2 remote-as 3
!
router bgp 2 view 2
 neighbor 10.0.0.3 remote-as 4
 neighbor 10.0.0.4 remote-as 5

	
show [ip] bgp view NAME

	Display the routing table of BGP view NAME.

Route Selection

	
bgp bestpath as-path confed

	This command specifies that the length of confederation path sets and
sequences should should be taken into account during the BGP best path
decision process.

	
bgp bestpath as-path multipath-relax

	This command specifies that BGP decision process should consider paths
of equal AS_PATH length candidates for multipath computation. Without
the knob, the entire AS_PATH must match for multipath computation.

	
bgp bestpath compare-routerid

	Ensure that when comparing routes where both are equal on most metrics,
including local-pref, AS_PATH length, IGP cost, MED, that the tie is broken
based on router-ID.

If this option is enabled, then the already-selected check, where
already selected eBGP routes are preferred, is skipped.

If a route has an ORIGINATOR_ID attribute because it has been reflected,
that ORIGINATOR_ID will be used. Otherwise, the router-ID of the peer the
route was received from will be used.

The advantage of this is that the route-selection (at this point) will be
more deterministic. The disadvantage is that a few or even one lowest-ID
router may attract all traffic to otherwise-equal paths because of this
check. It may increase the possibility of MED or IGP oscillation, unless
other measures were taken to avoid these. The exact behaviour will be
sensitive to the iBGP and reflection topology.

	
bgp bestpath peer-type multipath-relax

	This command specifies that BGP decision process should consider paths
from all peers for multipath computation. If this option is enabled,
paths learned from any of eBGP, iBGP, or confederation neighbors will
be multipath if they are otherwise considered equal cost.

	
bgp bestpath aigp

	Use the bgp bestpath aigp command to evaluate the AIGP attribute during
the best path selection process between two paths that have the AIGP
attribute.

When bgp bestpath aigp is disabled, BGP does not use AIGP tie-breaking
rules unless paths have the AIGP attribute.

Disabled by default.

	
maximum-paths (1-128)

	Sets the maximum-paths value used for ecmp calculations for this
bgp instance in EBGP. The maximum value listed, 128, can be limited by
the ecmp cli for bgp or if the daemon was compiled with a lower
ecmp value. This value can also be set in ipv4/ipv6 unicast/labeled
unicast to only affect those particular afi/safi’s.

	
maximum-paths ibgp (1-128) [equal-cluster-length]

	Sets the maximum-paths value used for ecmp calculations for this
bgp instance in IBGP. The maximum value listed, 128, can be limited by
the ecmp cli for bgp or if the daemon was compiled with a lower
ecmp value. This value can also be set in ipv4/ipv6 unicast/labeled
unicast to only affect those particular afi/safi’s.

Administrative Distance Metrics

	
distance bgp (1-255) (1-255) (1-255)

	This command changes distance value of BGP. The arguments are the distance
values for external routes, internal routes and local routes
respectively.

	
distance (1-255) A.B.C.D/M

	

	
distance (1-255) A.B.C.D/M WORD

	Sets the administrative distance for a particular route.

Require policy on EBGP

	
bgp ebgp-requires-policy

	This command requires incoming and outgoing filters to be applied
for eBGP sessions as part of RFC-8212 compliance. Without the incoming
filter, no routes will be accepted. Without the outgoing filter, no
routes will be announced.

This is enabled by default for the traditional configuration and
turned off by default for datacenter configuration.

When you enable/disable this option you MUST clear the session.

When the incoming or outgoing filter is missing you will see
“(Policy)” sign under show bgp summary:

exit1# show bgp summary

IPv4 Unicast Summary (VRF default):
BGP router identifier 10.10.10.1, local AS number 65001 vrf-id 0
BGP table version 4
RIB entries 7, using 1344 bytes of memory
Peers 2, using 43 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
192.168.0.2 4 65002 8 10 0 0 0 00:03:09 5 (Policy) N/A
fe80:1::2222 4 65002 9 11 0 0 0 00:03:09 (Policy) (Policy) N/A

Additionally a show bgp neighbor command would indicate in the For address family:
block that:

exit1# show bgp neighbor
...
For address family: IPv4 Unicast
 Update group 1, subgroup 1
 Packet Queue length 0
 Inbound soft reconfiguration allowed
 Community attribute sent to this neighbor(all)
 Inbound updates discarded due to missing policy
 Outbound updates discarded due to missing policy
 0 accepted prefixes

Reject routes with AS_SET or AS_CONFED_SET types

	
bgp reject-as-sets

	This command enables rejection of incoming and outgoing routes having AS_SET or AS_CONFED_SET type.

Suppress duplicate updates

	
bgp suppress-duplicates

	For example, BGP routers can generate multiple identical announcements with
empty community attributes if stripped at egress. This is an undesired behavior.
Suppress duplicate updates if the route actually not changed.
Default: enabled.

Send Hard Reset CEASE Notification for Administrative Reset

	
bgp hard-administrative-reset

	Send Hard Reset CEASE Notification for ‘Administrative Reset’ events.

When disabled, and Graceful Restart Notification capability is exchanged
between the peers, Graceful Restart procedures apply, and routes will be
retained.

Enabled by default.

Disable checking if nexthop is connected on EBGP sessions

	
bgp disable-ebgp-connected-route-check

	This command is used to disable the connection verification process for EBGP peering sessions
that are reachable by a single hop but are configured on a loopback interface or otherwise
configured with a non-directly connected IP address.

Route Flap Dampening

	
bgp dampening (1-45) (1-20000) (1-50000) (1-255)

	This command enables BGP route-flap dampening and specifies dampening parameters.

	half-life
	Half-life time for the penalty

	reuse-threshold
	Value to start reusing a route

	suppress-threshold
	Value to start suppressing a route

	max-suppress
	Maximum duration to suppress a stable route

The route-flap damping algorithm is compatible with RFC 2439 [https://tools.ietf.org/html/rfc2439.html]. The use of
this command is not recommended nowadays.

At the moment, route-flap dampening is not working per VRF and is working only
for IPv4 unicast and multicast.

See also

https://www.ripe.net/publications/docs/ripe-378

Multi-Exit Discriminator

The BGP MED attribute has properties which
can cause subtle convergence problems in BGP. These properties and problems
have proven to be hard to understand, at least historically, and may still not
be widely understood. The following attempts to collect together and present
what is known about MED, to help operators and FRR users in designing and
configuring their networks.

The BGP MED attribute is intended to allow one AS to indicate its
preferences for its ingress points to another AS. The MED attribute will not be
propagated on to another AS by the receiving AS - it is ‘non-transitive’ in the
BGP sense.

E.g., if AS X and AS Y have 2 different BGP peering points, then AS X might set
a MED of 100 on routes advertised at one and a MED of 200 at the other. When AS
Y selects between otherwise equal routes to or via AS X, AS Y should prefer to
take the path via the lower MED peering of 100 with AS X. Setting the MED
allows an AS to influence the routing taken to it within another, neighbouring
AS.

In this use of MED it is not really meaningful to compare the MED value on
routes where the next AS on the paths differs. E.g., if AS Y also had a route
for some destination via AS Z in addition to the routes from AS X, and AS Z had
also set a MED, it wouldn’t make sense for AS Y to compare AS Z’s MED values to
those of AS X. The MED values have been set by different administrators, with
different frames of reference.

The default behaviour of BGP therefore is to not compare MED values across
routes received from different neighbouring ASes. In FRR this is done by
comparing the neighbouring, left-most AS in the received AS_PATHs of the routes
and only comparing MED if those are the same.

Unfortunately, this behaviour of MED, of sometimes being compared across routes
and sometimes not, depending on the properties of those other routes, means MED
can cause the order of preference over all the routes to be undefined. That is,
given routes A, B, and C, if A is preferred to B, and B is preferred to C, then
a well-defined order should mean the preference is transitive (in the sense of
orders 1) and that A would be preferred to C.

However, when MED is involved this need not be the case. With MED it is
possible that C is actually preferred over A. So A is preferred to B, B is
preferred to C, but C is preferred to A. This can be true even where BGP
defines a deterministic ‘most preferred’ route out of the full set of A,B,C.
With MED, for any given set of routes there may be a deterministically
preferred route, but there need not be any way to arrange them into any order
of preference. With unmodified MED, the order of preference of routes literally
becomes undefined.

That MED can induce non-transitive preferences over routes can cause issues.
Firstly, it may be perceived to cause routing table churn locally at speakers;
secondly, and more seriously, it may cause routing instability in iBGP
topologies, where sets of speakers continually oscillate between different
paths.

The first issue arises from how speakers often implement routing decisions.
Though BGP defines a selection process that will deterministically select the
same route as best at any given speaker, even with MED, that process requires
evaluating all routes together. For performance and ease of implementation
reasons, many implementations evaluate route preferences in a pair-wise fashion
instead. Given there is no well-defined order when MED is involved, the best
route that will be chosen becomes subject to implementation details, such as
the order the routes are stored in. That may be (locally) non-deterministic,
e.g.: it may be the order the routes were received in.

This indeterminism may be considered undesirable, though it need not cause
problems. It may mean additional routing churn is perceived, as sometimes more
updates may be produced than at other times in reaction to some event .

This first issue can be fixed with a more deterministic route selection that
ensures routes are ordered by the neighbouring AS during selection.
bgp deterministic-med. This may reduce the number of updates as routes
are received, and may in some cases reduce routing churn. Though, it could
equally deterministically produce the largest possible set of updates in
response to the most common sequence of received updates.

A deterministic order of evaluation tends to imply an additional overhead of
sorting over any set of n routes to a destination. The implementation of
deterministic MED in FRR scales significantly worse than most sorting
algorithms at present, with the number of paths to a given destination. That
number is often low enough to not cause any issues, but where there are many
paths, the deterministic comparison may quickly become increasingly expensive
in terms of CPU.

Deterministic local evaluation can not fix the second, more major, issue of
MED however. Which is that the non-transitive preference of routes MED can
cause may lead to routing instability or oscillation across multiple speakers
in iBGP topologies. This can occur with full-mesh iBGP, but is particularly
problematic in non-full-mesh iBGP topologies that further reduce the routing
information known to each speaker. This has primarily been documented with iBGP
route-reflection topologies. However, any
route-hiding technologies potentially could also exacerbate oscillation with MED.

This second issue occurs where speakers each have only a subset of routes, and
there are cycles in the preferences between different combinations of routes -
as the undefined order of preference of MED allows - and the routes are
distributed in a way that causes the BGP speakers to ‘chase’ those cycles. This
can occur even if all speakers use a deterministic order of evaluation in route
selection.

E.g., speaker 4 in AS A might receive a route from speaker 2 in AS X, and from
speaker 3 in AS Y; while speaker 5 in AS A might receive that route from
speaker 1 in AS Y. AS Y might set a MED of 200 at speaker 1, and 100 at speaker
3. I.e, using ASN:ID:MED to label the speakers:

.
 /---------------\\
X:2------|--A:4-------A:5--|-Y:1:200
 Y:3:100--|-/ |
 \\---------------/

Assuming all other metrics are equal (AS_PATH, ORIGIN, 0 IGP costs), then based
on the RFC4271 decision process speaker 4 will choose X:2 over Y:3:100, based
on the lower ID of 2. Speaker 4 advertises X:2 to speaker 5. Speaker 5 will
continue to prefer Y:1:200 based on the ID, and advertise this to speaker 4.
Speaker 4 will now have the full set of routes, and the Y:1:200 it receives
from 5 will beat X:2, but when speaker 4 compares Y:1:200 to Y:3:100 the MED
check now becomes active as the ASes match, and now Y:3:100 is preferred.
Speaker 4 therefore now advertises Y:3:100 to 5, which will also agrees that
Y:3:100 is preferred to Y:1:200, and so withdraws the latter route from 4.
Speaker 4 now has only X:2 and Y:3:100, and X:2 beats Y:3:100, and so speaker 4
implicitly updates its route to speaker 5 to X:2. Speaker 5 sees that Y:1:200
beats X:2 based on the ID, and advertises Y:1:200 to speaker 4, and the cycle
continues.

The root cause is the lack of a clear order of preference caused by how MED
sometimes is and sometimes is not compared, leading to this cycle in the
preferences between the routes:

.
 /---> X:2 ---beats---> Y:3:100 --\\
| |
| |
 \\---beats--- Y:1:200 <---beats---/

This particular type of oscillation in full-mesh iBGP topologies can be
avoided by speakers preferring already selected, external routes rather than
choosing to update to new a route based on a post-MED metric (e.g. router-ID),
at the cost of a non-deterministic selection process. FRR implements this, as
do many other implementations, so long as it is not overridden by setting
bgp bestpath compare-routerid, and see also
Route Selection.

However, more complex and insidious cycles of oscillation are possible with
iBGP route-reflection, which are not so easily avoided. These have been
documented in various places. See, e.g.:

	[bgp-route-osci-cond]

	[stable-flexible-ibgp]

	[ibgp-correctness]

for concrete examples and further references.

There is as of this writing no known way to use MED for its original purpose;
and reduce routing information in iBGP topologies; and be sure to avoid the
instability problems of MED due the non-transitive routing preferences it can
induce; in general on arbitrary networks.

There may be iBGP topology specific ways to reduce the instability risks, even
while using MED, e.g.: by constraining the reflection topology and by tuning
IGP costs between route-reflector clusters, see RFC 3345 [https://tools.ietf.org/html/rfc3345.html] for details. In the
near future, the Add-Path extension to BGP may also solve MED oscillation while
still allowing MED to be used as intended, by distributing “best-paths per
neighbour AS”. This would be at the cost of distributing at least as many
routes to all speakers as a full-mesh iBGP would, if not more, while also
imposing similar CPU overheads as the “Deterministic MED” feature at each
Add-Path reflector.

More generally, the instability problems that MED can introduce on more
complex, non-full-mesh, iBGP topologies may be avoided either by:

	Setting bgp always-compare-med, however this allows MED to be compared
across values set by different neighbour ASes, which may not produce
coherent desirable results, of itself.

	Effectively ignoring MED by setting MED to the same value (e.g.: 0) using
set metric METRIC on all received routes, in combination with
setting bgp always-compare-med on all speakers. This is the simplest
and most performant way to avoid MED oscillation issues, where an AS is happy
not to allow neighbours to inject this problematic metric.

As MED is evaluated after the AS_PATH length check, another possible use for
MED is for intra-AS steering of routes with equal AS_PATH length, as an
extension of the last case above. As MED is evaluated before IGP metric, this
can allow cold-potato routing to be implemented to send traffic to preferred
hand-offs with neighbours, rather than the closest hand-off according to the
IGP metric.

Note that even if action is taken to address the MED non-transitivity issues,
other oscillations may still be possible. E.g., on IGP cost if iBGP and IGP
topologies are at cross-purposes with each other - see the Flavel and Roughan
paper above for an example. Hence the guideline that the iBGP topology should
follow the IGP topology.

	
bgp deterministic-med

	Carry out route-selection in way that produces deterministic answers
locally, even in the face of MED and the lack of a well-defined order of
preference it can induce on routes. Without this option the preferred route
with MED may be determined largely by the order that routes were received
in.

Setting this option will have a performance cost that may be noticeable when
there are many routes for each destination. Currently in FRR it is
implemented in a way that scales poorly as the number of routes per
destination increases.

The default is that this option is not set.

Note that there are other sources of indeterminism in the route selection
process, specifically, the preference for older and already selected routes
from eBGP peers, Route Selection.

	
bgp always-compare-med

	Always compare the MED on routes, even when they were received from
different neighbouring ASes. Setting this option makes the order of
preference of routes more defined, and should eliminate MED induced
oscillations.

If using this option, it may also be desirable to use
set metric METRIC to set MED to 0 on routes received from external
neighbours.

This option can be used, together with set metric METRIC to use
MED as an intra-AS metric to steer equal-length AS_PATH routes to, e.g.,
desired exit points.

Graceful Restart

BGP graceful restart functionality as defined in
RFC-4724 [https://tools.ietf.org/html/rfc4724/] defines the mechanisms that
allows BGP speaker to continue to forward data packets along known routes
while the routing protocol information is being restored.

Usually, when BGP on a router restarts, all the BGP peers detect that the
session went down and then came up. This “down/up” transition results in a
“routing flap” and causes BGP route re-computation, generation of BGP routing
updates, and unnecessary churn to the forwarding tables.

The following functionality is provided by graceful restart:

	The feature allows the restarting router to indicate to the helping peer the
routes it can preserve in its forwarding plane during control plane restart
by sending graceful restart capability in the OPEN message sent during
session establishment.

	The feature allows helping router to advertise to all other peers the routes
received from the restarting router which are preserved in the forwarding
plane of the restarting router during control plane restart.

(R1)---(R2)

1. BGP Graceful Restart Capability exchanged between R1 & R2.

<--->

2. Kill BGP Process at R1.

-->

3. R2 Detects the above BGP Restart & verifies BGP Restarting
 Capability of R1.

4. Start BGP Process at R1.

5. Re-establish the BGP session between R1 & R2.

<--->

6. R2 Send initial route updates, followed by End-Of-Rib.

<--

7. R1 was waiting for End-Of-Rib from R2 & which has been received
 now.

8. R1 now runs BGP Best-Path algorithm. Send Initial BGP Update,
 followed by End-Of Rib

<--->

BGP-GR Preserve-Forwarding State

BGP OPEN message carrying optional capabilities for Graceful Restart has
8 bit “Flags for Address Family” for given AFI and SAFI. This field contains
bit flags relating to routes that were advertised with the given AFI and SAFI.

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|F| Reserved |
+-+-+-+-+-+-+-+-+

The most significant bit is defined as the Forwarding State (F) bit, which
can be used to indicate whether the forwarding state for routes that were
advertised with the given AFI and SAFI has indeed been preserved during the
previous BGP restart. When set (value 1), the bit indicates that the
forwarding state has been preserved.
The remaining bits are reserved and MUST be set to zero by the sender and
ignored by the receiver.

	
bgp graceful-restart preserve-fw-state

	

FRR gives us the option to enable/disable the “F” flag using this specific
vty command. However, it doesn’t have the option to enable/disable
this flag only for specific AFI/SAFI i.e. when this command is used, it
applied to all the supported AFI/SAFI combinations for this peer.

End-of-RIB (EOR) message

An UPDATE message with no reachable Network Layer Reachability Information
(NLRI) and empty withdrawn NLRI is specified as the End-of-RIB marker that can
be used by a BGP speaker to indicate to its peer the completion of the initial
routing update after the session is established.

For the IPv4 unicast address family, the End-of-RIB marker is an UPDATE message
with the minimum length. For any other address family, it is an UPDATE message
that contains only the MP_UNREACH_NLRI attribute with no withdrawn routes for
that <AFI, SAFI>.

Although the End-of-RIB marker is specified for the purpose of BGP graceful
restart, it is noted that the generation of such a marker upon completion of
the initial update would be useful for routing convergence in general, and thus
the practice is recommended.

Route Selection Deferral Timer

Specifies the time the restarting router defers the route selection process
after restart.

Restarting Router : The usage of route election deferral timer is specified
in https://tools.ietf.org/html/rfc4724#section-4.1

Once the session between the Restarting Speaker and the Receiving Speaker is
re-established, the Restarting Speaker will receive and process BGP messages
from its peers.

However, it MUST defer route selection for an address family until it either.

	Receives the End-of-RIB marker from all its peers (excluding the ones with
the “Restart State” bit set in the received capability and excluding the ones
that do not advertise the graceful restart capability).

	The Selection_Deferral_Timer timeout.

	
bgp graceful-restart select-defer-time (0-3600)

	This is command, will set deferral time to value specified.

	
bgp graceful-restart rib-stale-time (1-3600)

	This is command, will set the time for which stale routes are kept in RIB.

	
bgp graceful-restart restart-time (0-4095)

	Set the time to wait to delete stale routes before a BGP open message
is received.

Using with Long-lived Graceful Restart capability, this is recommended
setting this timer to 0 and control stale routes with
bgp long-lived-graceful-restart stale-time.

Default value is 120.

	
bgp graceful-restart stalepath-time (1-4095)

	This is command, will set the max time (in seconds) to hold onto
restarting peer’s stale paths.

It also controls Enhanced Route-Refresh timer.

If this command is configured and the router does not receive a Route-Refresh EoRR
message, the router removes the stale routes from the BGP table after the timer
expires. The stale path timer is started when the router receives a Route-Refresh
BoRR message.

	
bgp graceful-restart notification

	Indicate Graceful Restart support for BGP NOTIFICATION messages.

After changing this parameter, you have to reset the peers in order to advertise
N-bit in Graceful Restart capability.

Without Graceful-Restart Notification capability (N-bit not set), GR is not
activated when receiving CEASE/HOLDTIME expire notifications.

When sending CEASE/Administrative Reset (clear bgp), the session is closed
and routes are not retained. When N-bit is set and bgp hard-administrative-reset
is turned off Graceful-Restart is activated and routes are retained.

Enabled by default.

BGP Per Peer Graceful Restart

Ability to enable and disable graceful restart, helper and no GR at all mode
functionality at peer level.

So bgp graceful restart can be enabled at modes global BGP level or at per
peer level. There are two FSM, one for BGP GR global mode and other for peer
per GR.

Default global mode is helper and default peer per mode is inherit from global.
If per peer mode is configured, the GR mode of this particular peer will
override the global mode.

BGP GR Global Mode Commands

	
bgp graceful-restart

	This command will enable BGP graceful restart functionality at the global
level.

	
bgp graceful-restart disable

	This command will disable both the functionality graceful restart and helper
mode.

BGP GR Peer Mode Commands

	
neighbor A.B.C.D graceful-restart

	This command will enable BGP graceful restart functionality at the peer
level.

	
neighbor A.B.C.D graceful-restart-helper

	This command will enable BGP graceful restart helper only functionality
at the peer level.

	
neighbor A.B.C.D graceful-restart-disable

	This command will disable the entire BGP graceful restart functionality
at the peer level.

Long-lived Graceful Restart

Currently, only restarter mode is supported. This capability is advertised only
if graceful restart capability is negotiated.

	
bgp long-lived-graceful-restart stale-time (1-16777215)

	Specifies the maximum time to wait before purging long-lived stale routes for
helper routers.

Default is 0, which means the feature is off by default. Only graceful
restart takes into account.

Administrative Shutdown

	
bgp shutdown [message MSG...]

	Administrative shutdown of all peers of a bgp instance. Drop all BGP peers,
but preserve their configurations. The peers are notified in accordance with
RFC 8203 [https://tools.ietf.org/html/rfc8203/] by sending a
NOTIFICATION message with error code Cease and subcode
Administrative Shutdown prior to terminating connections. This global
shutdown is independent of the neighbor shutdown, meaning that individually
shut down peers will not be affected by lifting it.

An optional shutdown message MSG can be specified.

Networks

	
network A.B.C.D/M

	This command adds the announcement network.

router bgp 1
 address-family ipv4 unicast
 network 10.0.0.0/8
 exit-address-family

This configuration example says that network 10.0.0.0/8 will be
announced to all neighbors. Some vendors’ routers don’t advertise
routes if they aren’t present in their IGP routing tables; bgpd
doesn’t care about IGP routes when announcing its routes.

	
bgp network import-check

	This configuration modifies the behavior of the network statement.
If you have this configured the underlying network must exist in
the rib. If you have the [no] form configured then BGP will not
check for the networks existence in the rib. For versions 7.3 and
before frr defaults for datacenter were the network must exist,
traditional did not check for existence. For versions 7.4 and beyond
both traditional and datacenter the network must exist.

IPv6 Support

	
neighbor A.B.C.D activate

	This configuration modifies whether to enable an address family for a
specific neighbor. By default only the IPv4 unicast address family is
enabled.

router bgp 1
 address-family ipv6 unicast
 neighbor 2001:0DB8::1 activate
 network 2001:0DB8:5009::/64
 exit-address-family

This configuration example says that network 2001:0DB8:5009::/64 will be
announced and enables the neighbor 2001:0DB8::1 to receive this announcement.

By default, only the IPv4 unicast address family is announced to all
neighbors. Using the ‘no bgp default ipv4-unicast’ configuration overrides
this default so that all address families need to be enabled explicitly.

router bgp 1
 no bgp default ipv4-unicast
 neighbor 10.10.10.1 remote-as 2
 neighbor 2001:0DB8::1 remote-as 3
 address-family ipv4 unicast
 neighbor 10.10.10.1 activate
 network 192.168.1.0/24
 exit-address-family
 address-family ipv6 unicast
 neighbor 2001:0DB8::1 activate
 network 2001:0DB8:5009::/64
 exit-address-family

This configuration demonstrates how the ‘no bgp default ipv4-unicast’ might
be used in a setup with two upstreams where each of the upstreams should only
receive either IPv4 or IPv6 announcements.

Using the bgp default ipv6-unicast configuration, IPv6 unicast
address family is enabled by default for all new neighbors.

Route Aggregation

Route Aggregation-IPv4 Address Family

	
aggregate-address A.B.C.D/M

	This command specifies an aggregate address.

In order to advertise an aggregated prefix, a more specific (longer) prefix
MUST exist in the BGP table. For example, if you want to create an
aggregate-address 10.0.0.0/24, you should make sure you have something
like 10.0.0.5/32 or 10.0.0.0/26, or any other smaller prefix in the
BGP table. The routing information table (RIB) is not enough, you have to
redistribute them into the BGP table.

	
aggregate-address A.B.C.D/M route-map NAME

	Apply a route-map for an aggregated prefix.

	

 Babel

Babel

Babel is an interior gateway protocol that is suitable both for wired networks
and for wireless mesh networks. Babel has been described as ‘RIP on speed’ –
it is based on the same principles as RIP, but includes a number of refinements
that make it react much faster to topology changes without ever counting to
infinity, and allow it to perform reliable link quality estimation on wireless
links. Babel is a double-stack routing protocol, meaning that a single Babel
instance is able to perform routing for both IPv4 and IPv6.

FRR implements Babel as described in RFC 6126 [https://tools.ietf.org/html/rfc6126.html].

Configuring babeld

The babeld daemon can be invoked with any of the common
options (Common Invocation Options).

The zebra daemon must be running before babeld is
invoked. Also, if zebra is restarted then babeld
must be too.

Configuration of babeld is done in its configuration file
babeld.conf.

Babel configuration

	
router babel

	Enable or disable Babel routing.

	
babel diversity

	Enable or disable routing using radio frequency diversity. This is
highly recommended in networks with many wireless nodes.
If you enable this, you will probably want to set babel
diversity-factor and babel channel below.

	
babel diversity-factor (1-256)

	Sets the multiplicative factor used for diversity routing, in units of
1/256; lower values cause diversity to play a more important role in
route selection. The default it 256, which means that diversity plays
no role in route selection; you will probably want to set that to 128
or less on nodes with multiple independent radios.

	
network IFNAME

	Enable or disable Babel on the given interface.

	

 OpenFabric

OpenFabric

OpenFabric, specified in draft-white-openfabric-06.txt, is a routing
protocol derived from IS-IS, providing link-state routing with efficient
flooding for topologies like spine-leaf networks.

FRR implements OpenFabric in a daemon called fabricd

Configuring fabricd

There are no fabricd specific options. Common options can be specified
(Common Invocation Options) to fabricd. fabricd needs to acquire
interface information from zebra in order to function. Therefore zebra must
be running before invoking fabricd. Also, if zebra is restarted then fabricd
must be too.

Like other daemons, fabricd configuration is done in an OpenFabric specific
configuration file fabricd.conf.

OpenFabric route